ACM知识点总结 -【搜索技术】

 本系列适用于有些基础的同学食用,因为我个人感觉那些大佬写的文章太深奥了,每个人有每个人的代码风格,还是自己写出来的代码自己看着舒服,所以我就开始写ACM知识点部分,后面会有习题及其讲解,基础的概念在本系列文章中不做过多赘述,希望大家能够理解。本系列会持续更新,希望大家多多关注。 

目录

1.1递归和排列

(1)用STL输出全排列

(2)用递归求全排列

1.2子集生成和组合问题

1.3 BFS 

1.4八数码问题与状态图搜索

 1.5 BFS与A*算法

1.6 双向广搜

1.7 DFS

1.8 IDA*


 

1.1递归和排列

由于性能问题,全排列采用4个数字

(1)用STL输出全排列

//用STL输出全排列
#include<bits/stdc++.h>
using namespace std;
#define fo(i,x,y) for(register int i=x;i<=y;i++)
int main(){
	int data[10]={1,5,6,8,7,9,3,2,4};
	sort(data,data+4);//前n个数的全排列,按照字典序 
	do{
		fo(i,0,3) cout<<data[i]<<" ";
		cout<<endl;
	}while(next_permutation(data,data+4));
	return 0;
} 

(2)用递归求全排列

#include<bits/stdc++.h>
using namespace std;
#define Swap(a,b) {int temp=a;a=b;b=temp;}
#define fo(i,a,b) for( int i=a;i<=b;i++)
int data[4]={4,2,1,3};
int num=0;

void pri_a(){
	fo(i,0,3) cout<<data[i]<<" ";
	cout<<endl;
}
int Perm(int begin,int end){
	if(begin==end){
		pri_a();
		num++;
	}
	else{
		for(int i=begin;i<=end;i++){
			Swap(data[begin],data[i]);
			Perm(begin+1,end);
			Swap(data[begin],data[i]);	
		}
	}
}
int main(){
	clock_t be,en;
	be=clock();
	sort(data,data+4);
	Perm(0,3);
	en=clock();
	cout<<(double)(en-be)/1000<<endl;
	cout<<num;
	return 0;
} 

运行结果如下: 

 注:上述代码中添加了一个测试运行时间的函数

1.2子集生成和组合问题

如何求n个数的子集?

#include<bits/stdc++.h>
#define fo(i,a,b) for( int i=a;i<=b;i++)
using namespace std;
void p(int n){
	for(int i=0;i<(1<<n);i++){
		fo(j,0,n-1){
			if(i&(1<<j)){
				cout<<j<<" ";
			}
		}
		cout<<endl;
	}
} 
int main(){
	int n;
	cin>>n;
	p(n);
	return 0;
} 

如何打印n个数中任意m个数的组合?

#include<bits/stdc++.h>
#define fo(i,a,b) for( int i=a;i<=b;i++)
using namespace std;
void p(int n,int m){
	fo(i,0,(1<<n)-1){
		int num=0,kk=i;
		while(kk){
			kk=kk&(kk-1);
			num++;
		}
		if(num==m){
			fo(j,0,n-1){
				if(i&(1<<j)) cout<<j<<" ";
			}
			cout<<endl;
		}
	}
}
int main(){
	int n,m;
	cin>>n>>m;
	p(n,m);
	return 0;
} 

1.3 BFS 

以杭电oj的一个习题引入→题目传送门

#include<iostream>
#include<queue>
#define fo(i,a,b) for( int i=a;i<=b;i++)
using namespace std;
char room[23][23];
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
int n,m,num;
#define check(x,y) (x<n && x>=0 && y>=0 && y<m)
struct node{
	int x,y;
};
void bfs(int bx,int by){
	num=1;
	queue<node>q;
	node stare;
	stare.x=bx;
	stare.y=by;
	q.push(stare);
	while(!q.empty()){
		stare=q.front();
		q.pop();
		fo(i,0,3){
			node temp;
			temp.x=stare.x+dir[i][0];
			temp.y=stare.y+dir[i][1];
			if(check(temp.x,temp.y) && room[temp.x][temp.y]=='.'){
				room[temp.x][temp.y]='#';
				num++;
				q.push(temp);
			}
		}
	}
}
int main(){
	int bx,by;
	while(cin>>m>>n){
		if(n==0 && m==0) break;
		fo(i,0,n-1){
			fo(j,0,m-1){
				cin>>room[i][j];
				if(room[i][j]=='@'){
					bx=i;
					by=j;
				}
			}
		}
		num=0;
		bfs(bx,by);
		cout<<num<<endl;
	}
	return 0;
} 

这道题属于经典的模版题,没有什么特殊的难点。

1.4八数码问题与状态图搜索

八数码问题解析

康托展开

题目传送门

#include<bits/stdc++.h>
#define fo(i,a,b) for( int i=a;i<b;i++)
using namespace std;
const int LEN=362880;
struct node{
	int state[9];
	int dis;
};
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
int visited[LEN]={0};
int state[9];
int goal[9];
long int factory[]={1,1,2,6,24,120,720,5040,40320,362880};

//康托展开
bool Cantor(int str[],int n){
	long result = 0;
	fo(i,0,n){
		int counted=0;
		fo(j,i+1,n-1){
			if(str[i]>str[j]) ++counted;
		}
		result+=counted*factory[n-i-1];
	}
	if(!visited[result]){
		visited[result]=1;
		return 1;
	}
	else return 0;
} 
int bfs(){
	node head;
	memcpy(head.state,state,sizeof(head.state));//复制起点状态
	head.dis=0;
	queue<node>q;
	Cantor(head.state,9);
	q.push(head);
	while(!q.empty()){
		head=q.front();
		q.pop();
		int z;
		for(z=0;z<9;z++){//找元素为0的位置 
			if(head.state[z]==0) {
				break;
			}
		}
		//转换为二维 
		int x=z%3;
		int y=z/3;
		fo(i,0,4){
			int newx=x+dir[i][0];
			int newy=y+dir[i][1];
			int nz=newx+3*newy;//转换为一维 
			if(newx>=0 && newx<3 && newy>=0 && newy<3){
				node newnode;
				memcpy(&newnode,&head,sizeof(struct node));//复制新状态
				swap(newnode.state[z],newnode.state[nz]);
				newnode.dis++;
				if(memcmp(newnode.state,goal,sizeof(goal))==0){
					return newnode.dis;
				} 
				if(Cantor(newnode.state,9)){
					q.push(newnode);
				}
			} 
		}
	} 
	return -1;
}
int main(){
	fo(i,0,9) cin>>state[i];
	fo(i,0,9) cin>>goal[i];
	int num=bfs();
	if(num!=-1) cout<<num<<endl;
	else cout<<"Impossible"<<endl;
	return 0;
} 

这道题与杭电oj上面的题有点不同

 1.5 BFS与A*算法

这里用两篇文章来简单介绍一下

BFS

A*算法

简单来说,A*算法就是“BFS+贪心”。

上述八数码问题可以用这一算法来实现,因为我还没写出来,所以先空着,后序再来补充。

代码

1.6 双向广搜

双向广搜简介

题目传送门

1.7 DFS

题目传送门

#include<iostream>
#include<algorithm>
#include<string>
#define fo(i,a,b) for(int i=a;i<b;i++)
using namespace std;
int n,tot=0;
int col[12]={0};
bool check(int c,int r){
    fo(i,0,r){
        if(col[i]==c || (abs(col[i]-c)==abs(i-r))){
            return false;
        }
    }
    return true;
} 
void dfs(int r){
    if(r==n) {
        tot++;
        return;
    }
    fo(c,0,n){
        if(check(c,r)){
            col[r]=c;
            dfs(r+1);
        }
    }
}
int main(){
    int ans[12]={0};
    fo(i,1,12){
        memset(col,0,sizeof(col));
        tot=0;
        n = i; 
        dfs(0);
        ans[i-1]=tot; 
    }
    while(cin>>n){
        if(n==0){
            return 0;
        }
        cout<<ans[n-1]<<endl; 
    }
    return 0;
}

1.8 IDA*

题目传送门

#include<iostream>
#define fo(i,a,b) for( int i=a;i<b;i++)
using namespace std;
int val[1010];
int pos,n;
bool ida(int now,int depth){
	if(now>depth) return false;
	if(val[pos]<<(depth-now)<n) return false;
	if(val[pos]==n) return true;
	pos++;
	fo(i,0,pos){
		val[pos]=val[pos-1]+val[i];
		if(ida(now+1,depth)) return true;
		val[pos]=abs(val[pos-1]-val[i]);
		if(ida(now+1,depth)) return true;
	}
	pos--;
	return false;
}
int main(){
	while(cin>>n&&n){
		int depth;
		for(depth=0;;depth++){
			val[pos=0]=1;
			if(ida(0,depth)) break;
		}
		cout<<depth<<endl;
	}
	return 0;
}

文章持续更新中,如有不足之处欢迎留言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值