本系列适用于有些基础的同学食用,因为我个人感觉那些大佬写的文章太深奥了,每个人有每个人的代码风格,还是自己写出来的代码自己看着舒服,所以我就开始写ACM知识点部分,后面会有习题及其讲解,基础的概念在本系列文章中不做过多赘述,希望大家能够理解。本系列会持续更新,希望大家多多关注。
目录
1.1递归和排列
由于性能问题,全排列采用4个数字
(1)用STL输出全排列
//用STL输出全排列
#include<bits/stdc++.h>
using namespace std;
#define fo(i,x,y) for(register int i=x;i<=y;i++)
int main(){
int data[10]={1,5,6,8,7,9,3,2,4};
sort(data,data+4);//前n个数的全排列,按照字典序
do{
fo(i,0,3) cout<<data[i]<<" ";
cout<<endl;
}while(next_permutation(data,data+4));
return 0;
}
(2)用递归求全排列
#include<bits/stdc++.h>
using namespace std;
#define Swap(a,b) {int temp=a;a=b;b=temp;}
#define fo(i,a,b) for( int i=a;i<=b;i++)
int data[4]={4,2,1,3};
int num=0;
void pri_a(){
fo(i,0,3) cout<<data[i]<<" ";
cout<<endl;
}
int Perm(int begin,int end){
if(begin==end){
pri_a();
num++;
}
else{
for(int i=begin;i<=end;i++){
Swap(data[begin],data[i]);
Perm(begin+1,end);
Swap(data[begin],data[i]);
}
}
}
int main(){
clock_t be,en;
be=clock();
sort(data,data+4);
Perm(0,3);
en=clock();
cout<<(double)(en-be)/1000<<endl;
cout<<num;
return 0;
}
运行结果如下:
注:上述代码中添加了一个测试运行时间的函数
1.2子集生成和组合问题
如何求n个数的子集?
#include<bits/stdc++.h>
#define fo(i,a,b) for( int i=a;i<=b;i++)
using namespace std;
void p(int n){
for(int i=0;i<(1<<n);i++){
fo(j,0,n-1){
if(i&(1<<j)){
cout<<j<<" ";
}
}
cout<<endl;
}
}
int main(){
int n;
cin>>n;
p(n);
return 0;
}
如何打印n个数中任意m个数的组合?
#include<bits/stdc++.h>
#define fo(i,a,b) for( int i=a;i<=b;i++)
using namespace std;
void p(int n,int m){
fo(i,0,(1<<n)-1){
int num=0,kk=i;
while(kk){
kk=kk&(kk-1);
num++;
}
if(num==m){
fo(j,0,n-1){
if(i&(1<<j)) cout<<j<<" ";
}
cout<<endl;
}
}
}
int main(){
int n,m;
cin>>n>>m;
p(n,m);
return 0;
}
1.3 BFS
以杭电oj的一个习题引入→题目传送门
#include<iostream>
#include<queue>
#define fo(i,a,b) for( int i=a;i<=b;i++)
using namespace std;
char room[23][23];
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
int n,m,num;
#define check(x,y) (x<n && x>=0 && y>=0 && y<m)
struct node{
int x,y;
};
void bfs(int bx,int by){
num=1;
queue<node>q;
node stare;
stare.x=bx;
stare.y=by;
q.push(stare);
while(!q.empty()){
stare=q.front();
q.pop();
fo(i,0,3){
node temp;
temp.x=stare.x+dir[i][0];
temp.y=stare.y+dir[i][1];
if(check(temp.x,temp.y) && room[temp.x][temp.y]=='.'){
room[temp.x][temp.y]='#';
num++;
q.push(temp);
}
}
}
}
int main(){
int bx,by;
while(cin>>m>>n){
if(n==0 && m==0) break;
fo(i,0,n-1){
fo(j,0,m-1){
cin>>room[i][j];
if(room[i][j]=='@'){
bx=i;
by=j;
}
}
}
num=0;
bfs(bx,by);
cout<<num<<endl;
}
return 0;
}
这道题属于经典的模版题,没有什么特殊的难点。
1.4八数码问题与状态图搜索
#include<bits/stdc++.h>
#define fo(i,a,b) for( int i=a;i<b;i++)
using namespace std;
const int LEN=362880;
struct node{
int state[9];
int dis;
};
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
int visited[LEN]={0};
int state[9];
int goal[9];
long int factory[]={1,1,2,6,24,120,720,5040,40320,362880};
//康托展开
bool Cantor(int str[],int n){
long result = 0;
fo(i,0,n){
int counted=0;
fo(j,i+1,n-1){
if(str[i]>str[j]) ++counted;
}
result+=counted*factory[n-i-1];
}
if(!visited[result]){
visited[result]=1;
return 1;
}
else return 0;
}
int bfs(){
node head;
memcpy(head.state,state,sizeof(head.state));//复制起点状态
head.dis=0;
queue<node>q;
Cantor(head.state,9);
q.push(head);
while(!q.empty()){
head=q.front();
q.pop();
int z;
for(z=0;z<9;z++){//找元素为0的位置
if(head.state[z]==0) {
break;
}
}
//转换为二维
int x=z%3;
int y=z/3;
fo(i,0,4){
int newx=x+dir[i][0];
int newy=y+dir[i][1];
int nz=newx+3*newy;//转换为一维
if(newx>=0 && newx<3 && newy>=0 && newy<3){
node newnode;
memcpy(&newnode,&head,sizeof(struct node));//复制新状态
swap(newnode.state[z],newnode.state[nz]);
newnode.dis++;
if(memcmp(newnode.state,goal,sizeof(goal))==0){
return newnode.dis;
}
if(Cantor(newnode.state,9)){
q.push(newnode);
}
}
}
}
return -1;
}
int main(){
fo(i,0,9) cin>>state[i];
fo(i,0,9) cin>>goal[i];
int num=bfs();
if(num!=-1) cout<<num<<endl;
else cout<<"Impossible"<<endl;
return 0;
}
这道题与杭电oj上面的题有点不同
1.5 BFS与A*算法
这里用两篇文章来简单介绍一下
简单来说,A*算法就是“BFS+贪心”。
上述八数码问题可以用这一算法来实现,因为我还没写出来,所以先空着,后序再来补充。
代码
1.6 双向广搜
1.7 DFS
#include<iostream>
#include<algorithm>
#include<string>
#define fo(i,a,b) for(int i=a;i<b;i++)
using namespace std;
int n,tot=0;
int col[12]={0};
bool check(int c,int r){
fo(i,0,r){
if(col[i]==c || (abs(col[i]-c)==abs(i-r))){
return false;
}
}
return true;
}
void dfs(int r){
if(r==n) {
tot++;
return;
}
fo(c,0,n){
if(check(c,r)){
col[r]=c;
dfs(r+1);
}
}
}
int main(){
int ans[12]={0};
fo(i,1,12){
memset(col,0,sizeof(col));
tot=0;
n = i;
dfs(0);
ans[i-1]=tot;
}
while(cin>>n){
if(n==0){
return 0;
}
cout<<ans[n-1]<<endl;
}
return 0;
}
1.8 IDA*
#include<iostream>
#define fo(i,a,b) for( int i=a;i<b;i++)
using namespace std;
int val[1010];
int pos,n;
bool ida(int now,int depth){
if(now>depth) return false;
if(val[pos]<<(depth-now)<n) return false;
if(val[pos]==n) return true;
pos++;
fo(i,0,pos){
val[pos]=val[pos-1]+val[i];
if(ida(now+1,depth)) return true;
val[pos]=abs(val[pos-1]-val[i]);
if(ida(now+1,depth)) return true;
}
pos--;
return false;
}
int main(){
while(cin>>n&&n){
int depth;
for(depth=0;;depth++){
val[pos=0]=1;
if(ida(0,depth)) break;
}
cout<<depth<<endl;
}
return 0;
}
文章持续更新中,如有不足之处欢迎留言