在Python中使用pyecharts图形画可视化大屏

目录

               引言

一.Pyecharts的基本用法

1.语法结构​编辑

二.绘制4个pyecharts图形

1.需要注意的问题

2.绘制散点图

​编辑3.绘制饼图

4.雷达图

5. 柱形图代码展示

 三.制作大屏标题 

1.代码解释

 1.图表结果展示

2.使用pyecharts库创建Page对象

3.使用Python的BeautifulSoup库来读取和修改一个HTML文件

大总结


引言

pyecharts 是一个用于生成 ECharts 图表的类库,可以方便地在 Python 中进行数据可视化。ECharts 是一种使用 JavaScript 实现的,功能丰富的图表库。通过 pyecharts,我们可以在 Python 中创建各种类型的图表,包括折线图、柱状图、饼图、散点图等。使用pyecharts进行可视化大屏的优点有很多,比如:

丰富的图表类型:pyecharts支持多种类型的图表,可以满足不同的数据可视化需求。

高效的性能:pyecharts的性能非常好,可以快速生成大量的图表。

易用性:pyecharts的API设计简洁易用,可以快速上手。

可扩展性:pyecharts支持自定义主题和与其他Python库的集成,方便用户扩展功能。

一.Pyecharts的基本用法

1.语法结构

Pyecharts的语法结构包括以下部分:

  1. 图表类型:Pyecharts支持多种图表类型,如柱状图、折线图、饼图、散点图等。每种图表类型都有自己的方法和属性,用于设置图表的外观和数据。
  2. 数据:Pyecharts图表的数据以列表形式给出,每个列表代表一个系列的数据。每个系列可以包含多个数据点,每个数据点包含x轴和y轴的值。
  3. 配置项:Pyecharts图表支持多种配置项,如标题、图例、提示框、工具栏等。这些配置项可以用于设置图表的外观和交互方式。
  4. 方法链:Pyecharts图表的方法可以链式调用,例如add_xaxis().add_yaxis()。这种链式调用方式使得代码更加简洁和易读。

总之,Pyecharts的语法结构基于ECharts的语法结构,通过Python类库的方式实现。使用Pyecharts可以方便地在Python中创建各种类型的图表,并对其进行配置和定制。

二.绘制4个pyecharts图形

pyecharts是一个基于Python语言的数据可视化库,可以用来创建各种类型的图形,如折线图、柱状图、散点图、饼图、地图等。它基于Echarts库,通过Python语言提供了更简单、更便捷的方式来创建图形,无需编写复杂的JavaScript代码。使用pyecharts,用户可以通过简单的Python代码来定义图形的数据、样式、布局等,然后生成HTML文件,从而实现图形的展示和交互。通过pyecharts,用户可以在Python环境下灵活、高效地进行数据可视化工作。

1.需要注意的问题

(1).绘制pyecharts图形需要导入库的相关类和函数:在Python文件中导入pyecharts库的相关类和函数:

import pandas as pd
from pyecharts.charts import Scatter
from pyecharts import options as opts

(2).安装pyecharts库:通过pip安装pyecharts库,可以使用以下命令进行安装:

pip install pyecharts

2.绘制散点图

1.安装pyecharts库,导入必要的包:

# 绘制一个散点图
import pandas as pd
from pyecharts.charts import Scatter
from pyecharts import options as opts

 2.导入使用的数据集并准备需要的数据并绘制散点图

scatter=(
    Scatter()
    .add_xaxis(xaxis_data=x)
    .add_yaxis(
        '',
        y_axis=y,
        symbol_size=12,
        label_opts=opts.LabelOpts(is_show=False)
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(
            type_='value',
        ),
        yaxis_opts=opts.AxisOpts(
            type_='value',
        )
    )
    )
scatter.render_notebook()
#scatter.render('散点图.html')

以下是这段代码的逐行解释:
scatter=(:开始定义一个名为scatter的变量,该变量将存储生成的散点图。
Scatter():创建一个新的Scatter对象,这是生成散点图的基础。
.add_xaxis(xaxis_data=x):为散点图添加x轴的数据。其中,x是一个包含x轴数据的列表或数组。
.add_yaxis('', y_axis=y, symbol_size=12, label_opts=opts.LabelOpts(is_show=False)):

'':y轴的
PyEcharts是一个用于生成基于ECharts库的交互式图表和可视化工具的Python库。通过它,我们可以轻松创建各种类型的图表,并将它们集成到网页或数据中展示。 ### PyEcharts 可视化的特点 1. **丰富的图表类型** 支持柱状图、折线图、饼图、散点图等多种图表样式,可以满足部分数据分析需求。 2. **高度自定义能力** 用户可以根据需要调整颜色主题、字体小等细节内容,使得最终呈现效果更贴近业务场景需求。 3. **支持动态加载数据** 对于数据量的应用场合,可通过配置实现渐进渲染等功能优化性能表现。 4. **简单易用API设计** 提供简洁明了的操作接口,开发者只需少量代码就能完成复杂图形绘制任务。 #### 示例步骤 假如我们要制作一个关于销售业绩的幕显示页面,则致流程如下: - 导入pyecharts模块; - 准备好所需的数据集(例如各地区销售额统计数据); - 根据实际需求选择合适的图表形式并初始化实例对象; - 设置标题、轴标签以及其他装饰信息; - 将结果保存为HTML文件或者嵌入Web应用框架运行环境里; ```python from pyecharts.charts import Bar import pyecharts.options as opts # 模拟一些简单的数据 categories = ['华东', '华南', '华北'] values = [120, 85, 96] bar_chart = ( Bar() .add_xaxis(categories) .add_yaxis("销量", values) .set_global_opts(title_opts=opts.TitleOpts(title="区域销售对比")) ) # 渲染成html文件查看 bar_chart.render('sales_dashboard.html') ``` 以上代码片段会生成一张包含三个条形代表不同区域销量情况的基本柱状图,并将其存储至当前目录下的`sales_dashboard.html`当中去。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

囡囡u

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值