1.查看文档:shift+tab
2.输入输出历史:InOut
3. %time %timeit %%time %%timeit
numpy:
1.特点:数据类型相同的有序的数据集合,如果初始化的数据类型不同,会强制类型统一
优先级:str>float> int
2. 构造:
np.array(list)
np.ones(shape,dtype)
np.zeros()
np.full(shape,dtype,fill_value)
np.eye (N)
np.linspace(start,stop,num)
np.arange([start],stop,[step])
np. random.randint ()
np. random. randn()
np. random. normal ()
np.random. random()
np. random. permutation()
3.属性:
ndim shape size dtype
4.索引:
访问元素:arr[index1,index2,index3...]
访问行:arr[行索引]
访问列:arr[:,列索引]
5.切片:
在每一个维度上指定切片范围
eg.arr[rowindex1:rowindex2,colindex1:colindex2]
6. 聚合运算:
sum() any () all() mean () std()var() argmax ()经常与逻辑表达式配合,比如查询一组数据中大于均值的所有数 argmin () np.median()
7.广播运算:
1.缺失维度补1
2.用已有值填充
最终目的:就是保证参与运算的两个数组形状一致 array + num
8. 排序
np.sort()快速排序、堆排序 np.partition()