【论文推荐】基于场景树概率驱动的电动汽车聚合商能量-调频市场分布鲁棒投标策略

本文提出了一种针对电动汽车聚合商(EVA)在面对市场侧不确定因素的调频市场投标策略,通过分层聚类构建场景树模型刻画时序相关性,设计两阶段优化的多时间尺度投标决策模型,实现了在分布鲁棒优化框架下的经济性和保守性兼顾。研究结果有助于提升EVA在电力市场的灵活性价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片

摘要:电动汽车聚合商(electric vehicle aggregator, EVA)的能量-调频市场投标策略决定着电动汽车灵活性的市场价值,而EVA的投标决策过程面临着市场侧诸多不确定因素的影响。为此,针对市场价格及调频信号的不确定性建模问题,提出了一种考虑不确定因素多时间尺度相关性的分布鲁棒建模方法。首先,提出一种基于分层聚类法的场景树模型,刻画不同市场不确定因素的时序相关性。其次,建立了一种基于两阶段优化的EVA参与能量-调频市场的多时间尺度投标决策模型,并基于混合范数距离构建场景树概率的模糊集,实现EVA投标决策在分布鲁棒优化框架下求解。然后,利用列和约束生成法解决构建的max-min-max-min 4层鲁棒问题。最后,通过仿真验证了所建模型在解决两阶段不确定性优化问题和提升投标策略经济性方面的优势。

关键词:场景树;电动汽车;调频市场;分布鲁棒优化;投标决策;

引用:艾欣,胡寰宇,胡俊杰等.基于场景树概率驱动的电动汽车聚合商能量-调频市场分布鲁棒投标策略[J].电力建设,2023,44(12):174-184.

 代码获取方式:

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值