所有链接建议使用电脑端打开,手机端打开较慢
专题推荐:论文推荐,代码分享,典藏级代码,视角(点击即可跳转)
时间序列预测是一个非常有实用价值和研究深度的方向,尤其在当今大数据时代,对于预测市场走势、天气预报、库存管理、能源需求、疾病传播等多种领域都至关重要。随着机器学习和深度学习技术的快速发展,这一领域持续展现出新的活力和潜力,因此可以说是一个充满机遇的好方向。
常用算法:
-
传统统计方法:
-
简单平均法与移动平均法:适用于数据平稳,没有明显趋势或季节性。
-
指数平滑法(包括简单指数平滑、双指数平滑(Holt线性趋势法)、三指数平滑(Holt-Winters方法)):处理具有趋势和/或季节性的数据。
-
自回归(AR)
-