所有链接建议使用电脑端打开,手机端打开较慢
专题推荐:论文推荐,代码分享,典藏级代码,视角(点击即可跳转)
程序名称:基于量子粒子群算法(QPSO)优化LSTM的时间序列预测算法
实现平台:matlab
代码简介:代码是基于QPSO-LSTM的负荷、光伏、风电等时间序列预测,MATLAB编写。包含LSTM(长短时记忆模型)与粒子群算法优化后的LSTM(PSOLSTM)以及量子粒子群算法优化后的LSTM(QPSOLSTM)的对比实验,可用于风电、光伏等负荷预测,数据为时间序列数据,为单输入单输出,更换数据简单,导入自己的数据即可使用,模型精确度高。QPSO算法属于是比较新的智能算法,有一定创新。代码模块化编写,可以更换数据直接用于自己的文章,附带算法的参考文献
量子粒子群算法(Quantum Particle Swarm Optimization, QPSO)是一种结合了量子理论与经典粒子群优化(Particle Swarm Optimization, PSO)概念的优化算法。QPSO旨在利用量子力学的原理,特别是量子位态的超位置性和不确定性,来增强PSO算法的搜索能力和处理复杂优化问题的效率。以下是量子粒子群算法的基本原理概述:
-
量子位态表示:
-
在经典PSO中,每个粒子都有一个明确的位置和速度。而在QPSO中,粒子的位置被量子化,用量子位态表示。这意味着粒子不再具有单一确定的位置,而是由一个波函数来描述其存在于搜索空间中的概率分布。
-
-
波函数与概率幅:
-
每个量子粒子由一个波函数表示,该波函数给出了粒子在搜索空间中各点出现的概率幅。波函数通常被建模为一个复数向量,其模的平方代表粒子出现在相应位置的概率。
-
-
全局最优与个体最优:
-
类似于经典PSO,QPSO也考虑个体最优位置(pbest)和全局最优位置(gbest)。但是,在QPSO中,这些最优信息用于调整波函数,而不是直接更新粒子的位置和速度。
-
-
量子态更新:
-
更新量子粒子的波函数时,会参考gbest和一个虚拟的全局最优位置(有时称为mbest,即所有个体最优位置的某种平均)。通过量子门操作或直接的概率幅调整,使得波函数逐渐倾向于这些最优解,从而引导搜索过程。
-
-
选择策略:
-
为了从波函数中获得实际位置,采用如蒙特卡洛方法等随机抽样技术。根据波函数的概率幅,随机选择一个位置作为粒子的下一个探索点。
-
-
收敛机制:
-
随着迭代进行,波函数的集中度逐渐提高,意味着粒子更有可能被发现于接近最优解的区域,最终达到收敛。
-
简而言之,量子粒子群算法通过量子力学的概念引入概率性搜索机制,增强了经典粒子群算法的全局搜索能力和灵活性,特别是在处理多模态优化问题时,能够有效避免早熟收敛,提高搜索效率和解决方案的质量。
参考文献:《基于QPSO-ELM-KF的电力系统短期负荷预测》《基于改进QPSO-SVM的输电线路覆冰厚度预测》《基于VMD-QPSO-BiLSTM的短期电力负荷预测方法研究》《基于GA理论与QPSO-ELM结合的短期负荷预测方法》《基于量子粒子群优化BP神经网络的风机出力预测》
代码获取方式:传统算法再就业!量子粒子群算法+多模型对比验证+LSTM时间序列预测(附matlab代码实现)
运行结果展示