所有链接建议使用电脑端打开,手机端打开较慢
专题推荐:论文推荐,代码分享,典藏级代码,视角(点击即可跳转)
程序名称:基于量子粒子群算法(QPSO)优化LSTM的时间序列预测算法
实现平台:matlab
代码简介:代码是基于QPSO-LSTM的负荷、光伏、风电等时间序列预测,MATLAB编写。包含LSTM(长短时记忆模型)与粒子群算法优化后的LSTM(PSOLSTM)以及量子粒子群算法优化后的LSTM(QPSOLSTM)的对比实验,可用于风电、光伏等负荷预测,数据为时间序列数据,为单输入单输出,更换数据简单,导入自己的数据即可使用,模型精确度高。QPSO算法属于是比较新的智能算法,有一定创新。代码模块化编写,可以更换数据直接用于自己的文章,附带算法的参考文献
量子粒子群算法(Quantum Particle Swarm Optimization, QPSO)是一种结合了量子理论与经典粒子群优化(Particle Swarm Optimization, PSO)概念的优化算法。QPSO旨在利用量子力学的原理,特别是量子位态的超位置性和不确定性,来增强PSO算法的搜索能力和处理复杂优化问题的效率。以下是量子粒子群算法的基本原理概述:
-
量子位态表示:
-
在经典P
-