传统算法再就业!量子粒子群算法+多模型对比验证+LSTM时间序列预测(附matlab代码实现)

本文介绍了一种基于量子粒子群算法(QPSO)优化LSTM模型的电力系统时间序列预测方法,对比了经典LSTM与QPSO-LSTM和QPSO-优化的性能。该代码提供了解决风电、光伏负荷预测问题,模块化设计易于定制和应用于科研论文。
摘要由CSDN通过智能技术生成

  所有链接建议使用电脑端打开,手机端打开较慢  

专题推荐论文推荐代码分享典藏级代码视角(点击即可跳转)

图片

程序名称:基于量子粒子群算法(QPSO)优化LSTM的时间序列预测算法

实现平台:matlab

代码简介:代码是基于QPSO-LSTM的负荷、光伏、风电等时间序列预测,MATLAB编写。包含LSTM(长短时记忆模型)与粒子群算法优化后的LSTM(PSOLSTM)以及量子粒子群算法优化后的LSTM(QPSOLSTM)的对比实验,可用于风电、光伏等负荷预测,数据为时间序列数据,为单输入单输出,更换数据简单,导入自己的数据即可使用,模型精确度高。QPSO算法属于是比较新的智能算法,有一定创新。代码模块化编写,可以更换数据直接用于自己的文章,附带算法的参考文献

量子粒子群算法(Quantum Particle Swarm Optimization, QPSO)是一种结合了量子理论与经典粒子群优化(Particle Swarm Optimization, PSO)概念的优化算法。QPSO旨在利用量子力学的原理,特别是量子位态的超位置性和不确定性,来增强PSO算法的搜索能力和处理复杂优化问题的效率。以下是量子粒子群算法的基本原理概述:

  1. 量子位态表示:

    • 在经典PSO中,每个粒子都有一个明确的位置和速度。而在QPSO中,粒子的位置被量子化,用量子位态表示。这意味着粒子不再具有单一确定的位置,而是由一个波函数来描述其存在于搜索空间中的概率分布。

  2. 波函数与概率幅:

    • 每个量子粒子由一个波函数表示,该波函数给出了粒子在搜索空间中各点出现的概率幅。波函数通常被建模为一个复数向量,其模的平方代表粒子出现在相应位置的概率。

  3. 全局最优与个体最优:

    • 类似于经典PSO,QPSO也考虑个体最优位置(pbest)和全局最优位置(gbest)。但是,在QPSO中,这些最优信息用于调整波函数,而不是直接更新粒子的位置和速度。

  4. 量子态更新:

    • 更新量子粒子的波函数时,会参考gbest和一个虚拟的全局最优位置(有时称为mbest,即所有个体最优位置的某种平均)。通过量子门操作或直接的概率幅调整,使得波函数逐渐倾向于这些最优解,从而引导搜索过程。

  5. 选择策略:

    • 为了从波函数中获得实际位置,采用如蒙特卡洛方法等随机抽样技术。根据波函数的概率幅,随机选择一个位置作为粒子的下一个探索点。

  6. 收敛机制:

    • 随着迭代进行,波函数的集中度逐渐提高,意味着粒子更有可能被发现于接近最优解的区域,最终达到收敛。

简而言之,量子粒子群算法通过量子力学的概念引入概率性搜索机制,增强了经典粒子群算法的全局搜索能力和灵活性,特别是在处理多模态优化问题时,能够有效避免早熟收敛,提高搜索效率和解决方案的质量。

参考文献:《基于QPSO-ELM-KF的电力系统短期负荷预测》《基于改进QPSO-SVM的输电线路覆冰厚度预测》《基于VMD-QPSO-BiLSTM的短期电力负荷预测方法研究》《基于GA理论与QPSO-ELM结合的短期负荷预测方法》《基于量子粒子群优化BP神经网络的风机出力预测》

代码获取方式:传统算法再就业!量子粒子群算法+多模型对比验证+LSTM时间序列预测(附matlab代码实现)

运行结果展示

图片

图片

图片

图片

图片

图片

图片

  1. 超创新组合预测模型!冠豪猪优化算法+双向时域卷积网络+双向门控循环单元时间序列回归预测(附matlab代码)

  2. 智能优化算法可以从哪些地方进行创新?小论文稳了!近阶段极具竞争力的最新高创新智能优化算法(附matlab代码实现)

  3. 最新组合预测模型!霜冰优化算法+变分模态分解+LSTM时间序列预测(附matlab代码实现)

  4. 超稳的实用型创新点!电动汽车V2G能力+分布式能源+充电站联合规划(附matlab代码)

  5. 效果超好的多目标智能优化算法?可用于优化与预测等,助力论文创新点!(附matlab代码实现)

  6. 多维度创新!多时间尺度滚动优化+双层优化调度+综合能源微网(附matlab代码实现)

  7. 热点组合预测模型,可拓展性高!卷积神经网络+门控循环单元网络+注意力机制时间序列预测(附matlab代码实现)

  8. 高热点算法!数据驱动+多离散场景分布鲁棒+电热综合能源系统优化(附matlab代码)

  9. 极小众高创新!直接套用!自适应带宽核函数密度估计+最小二乘支持向量机回归预测(附matlab代码实现)

  10. 工作量巨大!改改发小论文?多类型电动汽车灵活性+微电网日前-日内-实时多时间尺度优化调度(附matlab代码实现)

  11. 热点算法,亮点组合!Copula相关性理论+风光出力场景生成(附matlab代码实现)

  12. 如喝水一样产出创新点!16种时间序列数据模态分解方法,从热门到小众,随意组合!(附matlab代码实现)

  13. 超创新!效果超好!开普勒优化算法+双向门控循环单元网络+卷积神经网络+注意力机制的时间序列预测算法(附matlab代码实现)

  14. 超实用!不同充电类型和调控方式的电动汽车负荷蒙特卡洛模拟(附matlab代码实现)

  15. 无敌创新!没有任何相关论文!融合正余弦和柯西变异的麻雀搜索优化算法+卷积神经网络+双向长短期记忆网络(附matlab代码实现)

  16. 组合预测模型给你了,核主成分分析+经验模态分解+LSTM(附matlab代码实现)

  17. 智能优化算法的原理分类,为什么要用最新的算法?为什么要掌握多种算法?(附2023/2024最新智能优化算法合集matlab代码)

  18. 近两年最新智能优化算法,高创新,可融合预测和优化模型,小论文不愁了!(附matlab代码实现)

  19. 含共享储能和多类型柔性负荷的园区如何经济高效运行?(附matlab代码实现)

  20. 高创新性!区域电热冷气多能源系统+低碳经济联合需求响应+多目标优化(附matlab代码实现)

  21. 高创新热点组合模型!这次小论文真的稳了!电转气+碳捕集+天然气掺氢+阶梯式碳交易机制(附matlab代码实现)

  22. 组合创新,原创模型!多类型需求响应负荷标准化建模+共享储能(附matlab代码实现)

  23. 高创新,预测方向小论文有救了!霜冰优化算法+卷积神经网络+注意力机制+LSTM(附matlab代码实现)

  24. 小论文随便发,最新算法!变分模态分解+霜冰算法优化+LSTM时间序列预测(附matlab代码实现)

  25. 如何使用蒙特卡洛法模拟不同类型电动汽车充电负荷曲线?(附matlab实现)

  26. 需求侧资源按调节特性如何分类与建模?(附matlab实现)  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值