传统算法再就业!量子粒子群算法+多模型对比验证+LSTM时间序列预测(附matlab代码实现)

本文介绍了一种基于量子粒子群算法(QPSO)优化LSTM模型的电力系统时间序列预测方法,对比了经典LSTM与QPSO-LSTM和QPSO-优化的性能。该代码提供了解决风电、光伏负荷预测问题,模块化设计易于定制和应用于科研论文。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  所有链接建议使用电脑端打开,手机端打开较慢  

专题推荐论文推荐代码分享典藏级代码视角(点击即可跳转)

图片

程序名称:基于量子粒子群算法(QPSO)优化LSTM的时间序列预测算法

实现平台:matlab

代码简介:代码是基于QPSO-LSTM的负荷、光伏、风电等时间序列预测,MATLAB编写。包含LSTM(长短时记忆模型)与粒子群算法优化后的LSTM(PSOLSTM)以及量子粒子群算法优化后的LSTM(QPSOLSTM)的对比实验,可用于风电、光伏等负荷预测,数据为时间序列数据,为单输入单输出,更换数据简单,导入自己的数据即可使用,模型精确度高。QPSO算法属于是比较新的智能算法,有一定创新。代码模块化编写,可以更换数据直接用于自己的文章,附带算法的参考文献

量子粒子群算法(Quantum Particle Swarm Optimization, QPSO)是一种结合了量子理论与经典粒子群优化(Particle Swarm Optimization, PSO)概念的优化算法。QPSO旨在利用量子力学的原理,特别是量子位态的超位置性和不确定性,来增强PSO算法的搜索能力和处理复杂优化问题的效率。以下是量子粒子群算法的基本原理概述:

  1. 量子位态表示:

    • 在经典P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值