目录:
1. 整数在内存中的存储
2. 大小端字节序和字节序判断
3. 浮点数在内存中的存储
1. 整数在内存中的存储
在讲解操作符的时候,我们分享过了下面的内容:
整数的2进制表示方法有三种,即 原码、反码和补码 三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,⽤1表示“负”,而数值位最高位的⼀位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。
-原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
-反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
-补码:反码+1就得到补码。
------------------------------------------------------------------
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值⼀律⽤补码来表示和存储。
原因在于,使⽤补码,可以将符号位和数值域统⼀处理; 同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是 相同的,不需要额外的硬件电路。
2. 大小端字节序和字节序判断
(整数在内存中存储的是二进制的补码。在调试窗口中观察内存的时候,为了方便展示,显示的是16进制的值。)
调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为 什么呢?带着疑问让我们继续往下看:
-2.1 什么是大小端?
其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式:是指数据的低位字节内容保存在内存的高地址处,而数据的⾼位字节内容,保存 在内存的低地址处。
小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。 上述概念需要记住,方便分辨大小端。
-2.2 为什么有大小端?
为什么会有大小端模式之分呢?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit 位,但是在C语⾔中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看 具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:⼀个16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式, 而KEIL C51 则为⼤端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
-2.3 练习
2.3.1 练习1
请简述大端字节序和小端字节序的概念,设计⼀个小程序来判断当前机器的字节序。(10分)-百度笔试题
2.3.2 练习2
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d\n,b=%d\n,c=%d\n",a,b,c);
return 0;
}
分析代码输出结果为什么?
我们知道:
- c语言中,数值分为有符号数(signed) 和 无符号数(unsigned),有符号数区分正数和负数,无符号数只有正数。在有符号数中,二进制的最高位被称为符号位
- char---1个字节---8bit位 char到底是有符号的还是无符号的是 取决于编译器的,在VS上 char==signed char
2.3.3 练习3
#include <stdio.h>
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}
分析代码输出结果为什么?
我们知道:
%u 输出10进制无符号整数
2.3.4 练习4
#include <stdio.h>
int main()
{
char a[1000];
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
printf("%d", strlen(a));
return 0;
}
分析代码输出结果为什么?
我们知道:
signed char类型的取值范围为 :-128~127
unsigned char类型的取值范围为 :0~255
2.3.5 练习5
#include <stdio.h>
unsigned char i = 0;
int main()
{
for(i = 0;i<=255;i++)
{
printf("hello world\n");
}
return 0;
}
unsigned char类型的取值范围为 :0~255,因为条件恒成立,结果为死循环
2.3.6 练习6
#include <stdio.h>
int main()
{
int a[4] = { 1, 2, 3, 4 };
int *ptr1 = (int *)(&a + 1);
int *ptr2 = (int *)((int)a + 1);
printf("%x,%x", ptr1[-1], *ptr2);
return 0;
}
我们知道:
%x 输出无符号的16进制数字
3. 浮点数在内存中的存储
常见的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。 浮点数表示的范围: float.h 中定义
#include <stdio.h>
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
将以上代码运行出来 结果为:
说明:整数和浮点数在内存中存储的方式是有不一样的。
那么浮点数到底是怎么存储的呢?这个代码又该如何解释?
3.1浮点数的存储
上面的代码中, n 和 *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这么⼤? 要理解这个结果,⼀定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个⼆进制浮点数V可以表示成下⾯的形式:
举例来说:
⼗进制的5.0 写成⼆进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。
那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
3.1.1浮点数存的过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。 IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保 存24位有效数字。
至于指数E,情况就比较复杂
首先,E为⼀个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上 ⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是 10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001
简单试验为;
以小端的形式存储起来了
3.1.2 浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
-E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字M前加上第⼀位的1。
比如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补⻬0到23位 00000000000000000000000,则其⼆进制表示形式为:
0 01111110 00000000000000000000000
-E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表示±0,以及接近于0的很小的数字
0 00000000 00100000000000000000000
-E全为1
这时,如果有效数字M全为0,表示±⽆穷大(正负取决于符号位s)
0 11111111 00010000000000000000000
3.1.3 题目解析
下⾯,让我们回到⼀开始的练习:
9以整型的形式存储在内存中,得到如下⼆进制序列:
0000 0000 0000 0000 0000 0000 0000 1001
完
分享这么多,感谢观看