- 博客(5)
- 收藏
- 关注
原创 DIP实验五——阈值分割
直方图法:利用灰度直方图确定阈值。单峰分布图像选峰值位置为单一阈值;多峰分布选多个峰值位置作多阈值,可分割多个目标,但阈值数量和位置需手动确定。也可依据图像统计信息选阈值。迭代阈值分割法:依据灰度值统计特性,迭代自适应选择阈值,将图像分为背景和前景,能处理不同图像最大类间方差法(OTSU 法):按图像灰度特征将其分为背景和前景。类间方差衡量灰度分布均匀性,背景与前景的类间方差越大,两部分差别越大。类间方差最大时的阈值,使像素错分概率最小。方法核心原理优点缺点适用场景代码特点人工阈值分割。
2025-05-25 13:27:42
1922
原创 DIP实验四——基于PyQt5的界面设计
本文介绍了PyQt5与数字图像处理的结合应用。PyQt5作为跨平台GUI框架,以信号与槽为核心机制,提供丰富功能和面向对象设计。通过实验,构建了交互式图像处理系统,从实现图像加载、灰度化、高斯模糊等基本操作入手,逐步优化界面、扩展功能,新增滤波、锐化等操作。最终版本支持基于上次处理结果连续操作,并设有右键菜单便于步骤切换。该实践凸显PyQt5在构建图像处理系统时,具备代码结构清晰、易维护扩展、用户体验佳等优势 ,实现了高效的人机交互与图像处理功能整合。
2025-05-11 16:07:12
1729
原创 DIP实验三
在本次实验中,我们系统地完成了从图像噪声模拟到多种滤波处理的综合性实验研究。通过实验验证,我们对数字图像处理技术有了更深入的认识,现将主要研究成果总结如下:1.滤波算法性能评估均值滤波:算法实现简单,具有较好的平滑效果,但在处理过程中会导致显著的边缘模糊现象,影响图像细节的保留。高斯滤波:采用符合人眼视觉特性的加权平均策略,在有效抑制噪声的同时较好地保持了图像边缘的清晰度,特别适用于高斯噪声的去除。
2025-04-14 19:34:11
770
原创 DIP实验二
以上便是第二次实验课程所操作的所有实验,通过这次试验,我对数字图像处理的基础部分变得更加熟悉,能够看懂实验课上代码的各个步骤,以及实验中出现的问题能够得到有效解决并知晓错误原因,同时对opencv库中的各个函数有了更深的了解和认识,可以逐步尝试在编写代码中调用函数来实现所要达到的功能。
2025-03-26 19:51:19
705
原创 DIP实验一
上述代码与老师提供的代码大致无异,主要是改变了cv2.waitKey()这一行代码,由于2.1代码中cv2.waitKey()中无参数,导致cv2.waitKey()一直等待按键时间,无法流畅读入视频,于是我将其写为cv2.waitKey(1) & 0xFF == ord('q'),此时函数等待1ms,从而更加流畅,而& 0xFF:这是为了确保获取到的值是8位的ASCII码,这一整行的意思为:如果在这1毫秒内按下了 'q' 键,则返回。可为什么前边有两个变量呢?),这样反斜杠就不会被转义。
2025-03-14 21:04:55
1567
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅