Hole_up
码龄1年
关注
提问 私信
  • 博客:41,709
    41,709
    总访问量
  • 45
    原创
  • 64,893
    排名
  • 471
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:数据科学与大数据技术

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2023-11-19
博客简介:

2302_81240667的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    360
    当月
    9
个人成就
  • 获得745次点赞
  • 内容获得2次评论
  • 获得626次收藏
  • 代码片获得712次分享
创作历程
  • 45篇
    2024年
成就勋章
TA的专栏
  • 数学建模
    13篇
  • matlab
    4篇
  • python
    12篇
  • mysql
    3篇
  • linux
    4篇
兴趣领域 设置
  • Python
    pythonscikit-learnnumpypandasmatplotlibpipconda
  • 编程语言
    c语言
  • 大数据
    sqlmysql
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

178人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【2024_CUMCM】中心对数变换(CLR)[附代码]

中心对数变换(CLR)是一种针对成分数据的重要转换方法,它通过将成分数据转换为对数比值,有助于在统计分析中更有效地处理这类数据的特性。
原创
发布博客 2024.07.14 ·
5492 阅读 ·
22 点赞 ·
0 评论 ·
102 收藏

【2024_CUMCM】时间序列4-实战

时间序列4-实战 spss
原创
发布博客 2024.07.14 ·
773 阅读 ·
24 点赞 ·
0 评论 ·
11 收藏

【2024-CUMCM】时间序列4-实战-例题2

发布资源 2024.07.14 ·
sav

【2024-CUMCM】时间序列4-实战-例题1

发布资源 2024.07.14 ·
xlsx

【2024_CUMCM】时间序列3-一元时间序列分析的模型

以下将介绍一元时间序列分析的十种模型,更多的是需要大概了解模型,方便后面更好的应用
原创
发布博客 2024.07.13 ·
990 阅读 ·
22 点赞 ·
0 评论 ·
10 收藏

【2024_CUMCM】时间序列1

引言:时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。时间序列分析大致可分成三大部分,分别是描述过去、分析规律和预测未来。
原创
发布博客 2024.07.13 ·
991 阅读 ·
37 点赞 ·
0 评论 ·
21 收藏

【2024_CUMCM】插值算法(附代码)

在数模比赛中,常常会出现数据的分析时的数据不足或缺失,这时我们想要补数据,并且需要补上一些较为靠谱的数据,此时就需要用到插值法。三次样条插值法、分段三次埃尔米特插值法
原创
发布博客 2024.07.12 ·
2583 阅读 ·
27 点赞 ·
0 评论 ·
34 收藏

【2024_CUMCM】熵权TOPSIS方法

熵权topsis法其实应该称为前面我们学过层次分析法,是判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)所以,相对于层次分析法,熵权法是一种较为的方法指标的变异程度越小,所反映的信息量也越少,其对应的权值也应该越低(客观 = 数据本身就可以告诉我们权重)
原创
发布博客 2024.07.12 ·
1535 阅读 ·
21 点赞 ·
0 评论 ·
17 收藏

【2024_CUMCM】微分方程

常微分方程涉及单个自变量及其导数,而偏微分方程涉及多个自变量及其偏导数常微分,其中y是待求函数,x是自变量偏微分,其中u是待求函数,t和x是自变量。
原创
发布博客 2024.07.12 ·
908 阅读 ·
35 点赞 ·
0 评论 ·
22 收藏

【2024_CUMCM】机器学习导论、不平衡分类模型(重采样)、交叉验证(附代码)

这种举例子就懂了,例如根据体检数据判断是否患病,那根据常识,不患病的人肯定说远多于患病人数;例如检测欺诈性信用卡交易。如下图所示,欺诈性交易约为400笔,而非欺诈性交易为约90000笔。如果对于这种不平衡模型之间进行训练,你会发现调到最后,预测出不患病的准确率接近百分百,预测患病的准确率为0,这显然是不行的通过重采样进行解决用于处理高度不平衡数据集的一种广泛采用的类不平衡技术称为重采样。它包括从多数类中删除样本(欠采样)和/或从少数类中添加更多样本(过采样。
原创
发布博客 2024.07.11 ·
861 阅读 ·
32 点赞 ·
0 评论 ·
21 收藏

【2024-CUMCM】机器学习入门-股票客户流失数据

发布资源 2024.07.11 ·
xlsx

【2024_CUMCM】TOPSIS法(优劣解距离法)

TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法。TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。
原创
发布博客 2024.07.10 ·
1117 阅读 ·
36 点赞 ·
0 评论 ·
10 收藏

【2024_CUMCM】Matlab快速入门

matlab速成,包括常用和基础的东西
原创
发布博客 2024.07.09 ·
688 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

【2024_CUMCM】LINGO入门+动态规划

基本想法:将原问题转换为一系列相互联系的子问题,然后通过逐层递推求得最后的解基本思想:解决最优解问题,满足最优性原理(最优策略的任何一部分子策略必需是最优的)在这类问题中,可能会有许多可行解,每一个解都对应一个值,我们希望找到具有最优值的解。动态规划算法中蕴含着递归的思想,但是递归问题中会出现某些子问题被计算多次,而如果利用动态规划算法,可以把已经计算过的子问题的解给装起来,然后用到的时候再拿出来,减少计算次数。例如:斐波拉契数列递归求法//定义主函数int main()//数组。
原创
发布博客 2024.07.09 ·
1312 阅读 ·
25 点赞 ·
0 评论 ·
24 收藏

【2024_CUMCM】层次分析法

层次分析法 用于求出权重
原创
发布博客 2024.07.09 ·
921 阅读 ·
35 点赞 ·
0 评论 ·
26 收藏

【2024_CUMCM】T检验、F检验、卡方检验

分类数据(categorical data)也称定类数据。通常用来描述事物的属性或特征,而不是度量其数量。例如,性别(男、女)、民族、颜色、行业类型等都是分类数据的例子。
原创
发布博客 2024.07.07 ·
416 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

【2024_CUMCM】时间序列算法ARMA

ARMA模型,全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model),是一种常用于时间序列分析的统计模型。它结合了自回归模型(AR)和移动平均模型(MA)的特性,能够描述时间序列数据中的自相关性和随机扰动之间的关系。ARMA模型通常表示为ARMA(p, q)形式,其中p表示自回归项的数量,q表示移动平均项的数量。
原创
发布博客 2024.07.07 ·
1039 阅读 ·
30 点赞 ·
0 评论 ·
25 收藏

【2024_CUMCM】数据预处理、数据分析、数据可视化

问题说白了就是探究品类和销售量这两个,根据题意,我们先进行,按照以往的步骤是针对缺失值、重复值、异常值。我认为这道题应该是,需要思考到情境下的特殊情况和特殊数据,再进行处理。然后就可以开始数据分析,通过函数引入数量、均值、最值、百分位数、等描述统计量,并通过如热力图、箱线图、折线图、条形图、直方图更清晰探究其关联关系。
原创
发布博客 2024.07.07 ·
1090 阅读 ·
16 点赞 ·
0 评论 ·
9 收藏

NLTK下载及其报错问题,包解决

所以就开始想办法解决,最开始以为是找不到wordnet包,所以就先手动下载WordNet,然后把dowload改为相对地址了,但是发现问题并没有解决,还是用不了,所以就看了官网。NLTK一般是在作自然语言处理时用到,最开始时,我是直接在conda进行`conda install nltk`进行安装,以为就可以直接使用,但是运行时总会出现以下情况。对于window系统,host路径为`C:\Windows\System32\drivers\etc`,直接访问,然后使用记事本或者BowPad进行修改。
原创
发布博客 2024.07.05 ·
1069 阅读 ·
14 点赞 ·
0 评论 ·
9 收藏

【MySQL】E-R图-关系数据模型-3NF--精讲+练习(巨全面)

第一范式(1NF)规定表中的每个列必须是不可分割的基本数据项,即表中的每个单元格必须包含单一的值。如果一个列中包含多个值,则需要将该列拆分为多个独立的列,以确保表结构的原子性。第二范式(2NF)是在1NF基础上进一步要求,表中必须有主键,且非主键列必须完全依赖于整条主键,而不是主键的一部分。如果一个表有组合主键,则非主键列不能仅依赖于这个组合键的一部分。第三范式(3NF)是在2NF基础上继续要求,表中任何非主属性不依赖于其他非主属性,即不存在传递依赖。
原创
发布博客 2024.06.14 ·
3615 阅读 ·
47 点赞 ·
0 评论 ·
63 收藏
加载更多