【2024_CUMCM】熵权TOPSIS方法

目录

引言

度量信息量

例子

衡量事情可能性的大小——概率

信息熵

信息熵越大信息量越小

熵权法计算步骤

判断矩阵是否有非负数

计算j项指标下第i个样本所占的比重 

计算每个指标的信息熵,并计算信息效用值,并归一化得到每个指标的熵权 

熵权法原理


引言

熵权topsis法其实应该称为基于熵权法对于topsis模型的修正

前面我们学过层次分析法,层次分析法最大的缺点是判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)

所以,相对于层次分析法,熵权法是一种较为客观的方法

依据的原理: 指标的变异程度越小,所反映的信息量也越少,其对应的权值也应该越低
(客观 = 数据本身就可以告诉我们权重) 

度量信息量

例子

例如,A平时成绩很差,B平时成绩特别好,在高考的时候,A和B都考上了985,那此时人们对A的惊讶程度会远大于B,那此时也说明了A的行为信息量要远大于B

也就是说:

  • 越有可能发生的事情信息量越少
  • 越不可能发生的事情信息量越多 
  • (注:这是站在现在看未来) 

衡量事情可能性的大小——概率

根据上述可画出图1,然后建立方程

信息熵

概率乘以信息量再相加,有点类似我们学过的加权平均数 

信息熵的本质是对信息量的期望值

信息熵越大信息量越小

我们上面说信息熵是信息量的均值,所以很多人看到后会认为是信息熵越大信息量越大,其实不然,解释如下:

在前面说度量信息量时,我特地标注了我们是站在现在看未来,所以从现在看,A的成绩很差,那如果未来他考上了985,那信息量就很大。

这里也一样,信息熵越大,我现在拥有的信息量就越多,但是我未来能够获得的信息量就越少,所以应该说信息熵越大信息量越小

站在现有的角度看未来

熵权法计算步骤

判断矩阵是否有非负数

如果有非负数,需将其化到标准区间,后面计算概率时需保证每一个都是非负数

disp('原来标准化得到的Z矩阵中存在负数,所以需要对X重新标准化')
for i = 1:n
    for j = 1:m
        Z(i,j) = [X(i,j) - min(X(:,j))] / [max(X(:,j)) - min(X(:,j))];
    end
end

计算j项指标下第i个样本所占的比重 

将其看作相对熵计算中用到的概率

计算每个指标的信息熵,并计算信息效用值,并归一化得到每个指标的熵权 

信息效用值 = 1 - 信息熵   ——归一化——>   熵权


熵权法原理

 

可以用指标的标准差来衡量样本的变异程度,指标的标准差越大,其信息熵越小。  

 下图是蒙特卡罗方法

        蒙特卡洛模拟是一种统计模拟方法,它利用随机数或伪随机数来解决计算问题,尤其是那些难以用解析方法直接解决的问题。

随机生成一组有 30 个样本且位于区间 [0,1]上的数据,计算其信息熵和标准差; 将上述步骤重复100 次,我们能够得到 100组信息熵和标准差的取值,将其绘制成散点图  

 

n = 30;  % 样本个数
N = 100; % 试验的次数
result = zeros(N,2);  % 初始化用来保存信息熵和标准差的矩阵,横坐标表示信息熵,纵坐标表示标准差
for i = 1:N
    x = rand(n,1);  % 随机生成n个位于区间[0,1]上面的样本 (随机数生成是视频第四讲的内容)
    p = x / sum(x);
    e = -sum(p .* mylog(p)) / log(n); % 计算信息熵
    disp(e)
    sd = std(x);  % 计算标准差(描述性统计是视频第五讲的内容)
    disp(sd)
    result(i,1) = e;
    result(i,2) = sd;
end

plot(result(:,1),result(:,2),'o')   %(画图是视频第三讲的内容)
xlabel('信息熵')
ylabel('标准差')
[r,p] = corrcoef(result(:,1),result(:,2))

可以看出标准差越大,变异程度越大,反映出来的信息量就越大,信息熵越小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值