这道题我们可以用暴力dfs解决问题,但是肯定过不了所有案例,因此我们可以选择用dp或者贪心寻找最优策略,对于贪心,我们可以发现如果寻找互不重叠的00,11子串,我们可以用状态数组st来表示每个字符的考虑情况,再将字符分为非?和?进行考虑,优先与前一个字符进行匹配,如果匹配成功就直接状态数组标记,否则再和后一个字符进行匹配,这种策略我们可以直接得出答案,
代码示例如下:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1e6 + 5;
bool st[N] = { 0 };
string s;
int n;
int cent = 0;
int main(void)
{
cin >> s;
n = s.size();
for (int i = 0; i < n; i++) {
if (s[i] != '?') {//如果当前的符号不是‘?’
if (!st[i]) {//并且当前并没有被访问
if (i - 1 >= 0) {
if (!st[i - 1] && s[i] == s[i - 1]) {//如果前一个没有被访问,并且与前一个相等
st[i] = st[i - 1] = true;
cent++;
}
}
if (i + 1 < n) {
if (!st[i] && !st[i + 1] && s[i] == s[i + 1]) {//如果前一个不相同,就访问下一个
st[i] = st[i + 1] = true;//这里多加一个!st[i]判断,防止前一个匹配后再次进行后一个匹配
cent++;
}
}
}
}
else {//如果这个字符是‘?’
if (!st[i]) {//如果当前没有访问过
if (i - 1 >= 0) {//如果可以访问前面
if (!st[i - 1]) {
st[i] = st[i - 1] = true;
cent++;
}
}
if (i + 1 < n) {//如果可以访问后边
if (!st[i] && !st[i + 1]) {//当前和后面都可以访问
st[i] = st[i + 1] = true;
cent++;
}
}
}
}
}
cout << cent << endl;
return 0;
}
结果可以全部通过