本篇博客给大家带来的是简单多状态之动态规划解法技巧.
🐎文章专栏: 动态规划
🚀若有问题 评论区见
❤ 欢迎大家点赞 评论 收藏 分享
如果你不知道分享给谁,那就分享给薯条.
你们的支持是我不断创作的动力 .
要开心
要快乐
顺便进步
1. 按摩师
题目链接: 面试题 17.16. 按摩师
题目内容:
一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。
注意:本题相对原题稍作改动
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。
示例 3:
输入: [2,1,4,5,3,1,1,3]
输出: 12
解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。
第一 步骤分析
1. 状态表示
dp[i]表示选择到 i 位置时得最长预约时间. 选择到 i 位置时, 可由 i 位置是否选择分两种情况:
f[i] 表示选择到 i 位置时 nums[i] 必选的最长时间.
g[i] 表示选择到 i 位置时 nums[i] 不选的最长时间.
2. 状态转移方程
先分析关于f[i]的递推公式, 如上图, nums[i] 必选意味着nums[i-1]必定不选. 从起始点到[i-1]且nums[i-1]不选, 不就是g[i-1]吗?
所以f[i] = g[i-1] + nums[i];
再求g[i] 的递推公式
如上图, nums[i]不选, nums[i-1] 可选可不选.
nums[i-1] 选择时, g[i] = f[i-1]
nums[i-1] 不选时, g[i] = g[i-1]
又因为是求最大值,所以g[i] = Math.max(f[i-1],g[i-1]);
3. 初始化
f[0] = nums[0]
4. 填表顺序
从左往右填表
5. 返回值
返回Math.max(f[n-1],g[n-1]);
第二 代码实现
class Solution {
public int massage(int[] nums) {
//1. 创建dp表
int n = nums.length;
int[] f = new int[n];
int[] g = new int[n];
//2. 初始化
if(nums.length == 0) return 0;
f[0] = nums[0];
//3. 填表
for(int i = 1;i < n;++i) {
f[i] = g[i-1] + nums[i];
g[i] = Math.max(f[i-1],g[i-1]);
}
return Math.max(f[n-1],g[n-1]);
}
}
2. 打家劫舍
题