给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树反转后的层序遍历的序列。数字间以1个空
#include<iostream>
#include<iomanip>
#include<queue>
using namespace std;
typedef struct Tree{
int data;
struct Tree *l,*r;
}sqtree,*linktree;
linktree inicreartree(int n)
{
linktree tree=new sqtree;
tree->data=n;
tree->l=tree->r=NULL;
return tree;
}
linktree pptree(int a[],int b[],int ai,int bi,int len)
{
if(len<=0)
return NULL;
linktree tree;
tree=inicreartree(a[ai]);
if(len==1)
return tree;
int i;
for(i=bi;i<bi+len;i++)//前中序创建树,与中后序思想相同
{
if(a[ai]==b[i])
break;
}
tree->l=pptree(a,b,ai+1,i-i+bi,i-bi);
tree->r=pptree(a,b,ai+1+i-bi,i+1,len-i+bi-1);
return tree;
}
void aatree(linktree tree)
{
queue<linktree> q;//利用队列实现层序遍历
q.push(tree);
while(!q.empty())
{
tree=q.front();
q.pop();
if(tree->l)
q.push(tree->l);
if(tree->r)
q.push(tree->r);
cout<<tree->data;
if(!q.empty())
cout<<" ";
}
}
void fftree(linktree tree)//递归实现左右子树交换
{
linktree lc,rc;
if(!tree)
return ;
if(!tree->l&&!tree->r)
return ;
lc=tree->l;
rc=tree->r;
tree->l=rc;
tree->r=lc;
fftree(lc);
fftree(rc);
}
int main()
{
linktree tree;
int a[31],b[31],n,i;
cin>>n;
for(i=1;i<=n;i++)
cin>>b[i];
for(i=1;i<=n;i++)
cin>>a[i];
tree=pptree(a,b,1,1,n);
fftree(tree);
aatree(tree);
}
本文介绍了如何根据给定的二叉树的中序遍历和前序遍历,首先进行镜面反转操作(即交换非叶节点的左右子节点),然后输出反转后的树的层序遍历序列。使用递归和队列数据结构实现算法。
1547

被折叠的 条评论
为什么被折叠?



