《高等数学》(同济版)——定义、定理、特性,归纳整理

4 篇文章 0 订阅
2 篇文章 0 订阅

前言:

        由于写在书本上效率太低,也不方便查找,于是放在了博客上,也便于大家观看,提高学习效率。

第一章,函数与极限

第一节 映射与函数

一、映射

        定义: 设X、Y是两个非空集合,如果存在一个法则ƒ,使得对X中每个元素x,按法则ƒ,在Y中有唯一确定的元素y与之对应,那么称ƒ为从X到Y的映射,记作:

                                                ƒ:X \rightarrow Y

其中y称为元素x(在映射f下)的像,并记作f(x),即

                                                        y =f(x)

而元素x称为元素y(在映射ƒ下)的一个原像;集合X称为映射ƒ的定义域,记作D_{f},即D_{f} = X;X中的所有元素的像所组成的集合称为映射ƒ的值域,记作R_{f}或者f(x),即 

                                       R_{f}=f(x)= \{f(x)|x\in X\}

特性:逆映射,为单射时(R_{f} = D_{f})可构成反函数f^{-1}

二、函数

        定义:设数集D\subset R,则称映射f:D\rightarrow R为定义在D上的函数,通常简记为

                                                y = f(x),x\in D

其中x称为自变量,y称为因变量,D称为定义域,记作D_{f},即D_{f}=D.

       

        特性:1,有界性;2,单调性;3,奇偶性;4,周期性。

                ##五种初等函数可以组合成基本函数,但是基本函数不是初等函数##

第二节 数列的极限

一、数列极限的定义

        定义:设\{X_{n}\}为一数列,如果存在常数a,对于任意给定的正数ε(不论它多么小),总是存在正整数N,使得当n>N时,不等式

                                                        |x_{n} - a |< \varepsilon

都成立,那么就称常数a是数列\{x_{n}\}的极限,或者称数列\{x_{n}\}收敛于a,记为

                                                       \lim_{n \rightarrow \propto }x_n = a

                                                x_n \rightarrow a(n\rightarrow\propto )

二、收敛数列的性质

        定理1(极限的唯一性)如果数列\{ x_n\}收敛,那么它的极限唯一.

        定理2(收敛数列的有界性)如果数列\{ x_n\}收敛,那么数列\{ x_n\}一定有界.

        定理3(收敛数列的保号性)如果\lim_{n \rightarrow \propto } x_n= a,且a>0(或a<0),那么存在正整数N,当n>N时,都有x_n > 0(x_n < 0).

        定理4(收敛数列与其子数列间的关系)如果数列\{X_{n}\}收敛于a,那么它的任一子数列也收敛,且极限也是a.

第三节 函数的极限

一、函数极限的定义

        定义1 设函数f(x)在点x_{0}的某一去心领域内有定义.如果存在常数A,对于任意给定的正数\varepsilon(不论它多么小),总存在正数\delta,使得当x满足不等式0<|x-x_{0}|<\delta时,对应的函数值f(x)都满足不等式

                                                |f(x)-A| < \varepsilon

那么常数A就叫做函数f(x)x\rightarrow x_{0}时的极限,记作

                                        lim_{x \rightarrow x_{0}} f(x) = Af(x) \rightarrow A (x \rightarrow x_{0})

二、函数极限的性质

        定理1(函数极限的唯一性)如果lim_{x \rightarrow x_{0}} f(x)存在,那么极限唯一.

        定理2(函数极限的局部有界性)如果lim_{x \rightarrow x_{0}} f(x) = A,那么存在常数M>0\delta > 0,使得当0 <|x - x_{0}|<\delta,有|f(x)| \leqslant M.

        定理3(函数极限的局部保号性)如果lim_{x \rightarrow x_{0}} f(x) = A,且A > 0(或A<0),那么存在常数\delta > 0,使得当0<|x-x_0|<\delta时,有f(x)>0(或f(x)<0).

        定理4(函数极限与数列极限的关系)如果极限lim_{x \rightarrow x_{0}} f(x)存在,\{x_{n}\}为函数f(x)的定义域内任一收敛于x_{0}的数列,且满足:x_{n} \neq x_0n \in N_+),那么相应的函数值数列\{f(x_n)\}必定收敛,且lim_{n \rightarrow \propto} f(x_n) = lim_{x \rightarrow x_{0}} f(x).

第四节 无穷小与无穷大

1,无穷小与无穷大的定义

        定义1 如果函数f(x)x_n \rightarrow x_0 (or \ \ x\rightarrow \propto)时的极限为零,那么称函数f(x)为当x_n \rightarrow x_0 (or \ \ x\rightarrow \propto)时的无穷小

        定义2 设函数f(x)x_0的某一去心领域内有定义(或|x|大于某一正数时有定义).如果对一任意给定的正数M(不论它有多大),总是存在正数\delta(或正数X), 只要x适合不等式0<|x-x_0|<\delta(or \ \ x \rightarrow \propto),对应的函数值f(x)总满足不等式

                                                        |f(x)|>M

那么称函数f(x)是当x \rightarrow x_0(or \ \ x\rightarrow \propto)时的无穷大.

1,无穷小和无穷大的定理

        定理1 在自变量的同一变化过程x \rightarrow x_0(or \ \ x \rightarrow \propto)中,函数f(x)具有极限A的充分必要条件是f(x)=A+\alpha,其中\alpha是无穷小.

        定理2 在自变量的同一变化过程中,如果f(x)为无穷大,那么\frac{1}{f(x)}为无穷小;反之,如果f(x)为无穷小,且f(x) \neq 0,那么\frac{1}{f(x)}为无穷大.

第五节 极限运算法则

定理1 两个无穷小的和是无穷小(归纳:有限个无穷小之和也是无穷小)

定理2 有界函数与无穷小的乘积是无穷小

        推论1 常数与无穷小的乘积是无穷小;

        推论2 有限个无穷小的乘积是无穷小;

定理3 如果limf(x)=A,limg(x)=B

那么有:(1) lim[f(x)\pm g(x)] = limf(x) \pm limg(x) = A \pm B; \\(2) lim[f(x)\cdot g(x)] = limf(x) \cdot limg(x) = A \cdot B; \\(3)if B \ne 0, than\\lim\frac{f(x)}{g(x)} = \frac{limf(x)}{limg(x)} = \frac{A}{B}

         推论1 如果limf(x)存在,而c为常数,那么

                        lim[cf(x)]=climf(x)

        推论2 如果limf(x)存在,而n是正整数,那么

                        lim[f(x)]^n = [limf(x)]^n

定理4 设有数列\{x_n\}\ \ and \ \ \{y_n\},如果

                                lim_{x_n \rightarrow \propto} x_n = A ,\ \ lim_{n \rightarrow \propto} y_n =B

那么

        (1)lim_{x_n \rightarrow \propto} x_n \pm y_n = A \pm B \\(2)lim_{x_n \rightarrow \propto} x_n \cdot y_n = A \cdot B \\(3)when\ \ y_n \ne 0 (n = 1,2,\cdots )\ \ and\ \ B \ne 0 ,lim_{n \rightarrow \propto}\frac{x_n}{y_n} = \frac{A}{B}

定理5 如果\varphi(x) \geqslant \psi(x),而\varphi(x)=A,\ \ \psi(x)=B,那么A\geqslant B

定理6 (复合函数的极限运算法则)设函数y = f[g(x)]是由函数u = g(x)与函数y = f(x)复合而成,f[g(x)]在点x_0的某去心领域内有定义,若lim_{x\rightarrow \propto}g(x) = u_0, \ \ lim_{u \rightarrow u_0}f(u) =A且存在\delta >0,当x \in U^o(x_0,\delta_0)时,有g(x) \ne u_0,则

                                lim_{x \rightarrow x_0}f[g(x)] = lim_{u \rightarrow u_0}f(u) = A

第六节 极限存在准则,两个重要极限

准则Ⅰ

如果数列,\{y_n\}\{z_n\}满足下列条件:

(1)从某项起,即\exists n_0 \in N_+ , \ \ when:\ \ n>n_0时, 有

                                        y_n \leqslant x_n \leqslant z_n

(2)lim_{n \rightarrow \propto} y_n = a , \ \ lim_{n \rightarrow \propto} z_n = a

那么数列\{x_n\}的极限存在,且lim_{n \rightarrow \propto} x_n = a

准则Ⅰ'

如果

(1)When: \ \ x \in U^o(x_0,r)(or\ \ |x|>M):

                                                g(x) \leqslant f(x) \leqslant z(x)

(2)lim_{x \rightarrow x_0(or\ \ x\rightarrow \propto)}g(x) =A, lim_{x \rightarrow x_0(or\ \ x\rightarrow \propto)}h(x) =A

那么lim_{x \rightarrow x_0(or\ \ x\rightarrow \propto)}f(x)存在,且等于A.

准则Ⅱ

单调有界数列必有极限.

        如果数列\{x_n\}满足条件

                                x_1 \leqslant x_2 \leqslant x_3 \leqslant \cdots \leqslant x_n \leqslant x_{n+1} \leqslant \cdots

        就称数列\{x_n\}时单调增加的;如果数列\{x_n\}满足条件

                                x_1\geqslant x_2 \geqslant x_3 \geqslant \cdots \geqslant x_n \geqslant x_{n+1} \geqslant \cdots

        就称数列\{x_n\}时单调减少的.单调增加和单调减少的数列统称为单调数列。

准则Ⅱ'

        设函数f(x)在点x_0的某个左领域内单调并且有界,则f(x)x_0的左极限f(x_0^-)必定存在.

柯西(Cauchy)极限存在准则 :数列\{x_n\}收敛的充分必要条件是:对于任意给定的正数\varepsilon,存在正整数N,使得当m > N,n>N时,有

                                                |x_n - x_m| <\varepsilon.

第七节 无穷小的比较

        定义:

        如果 lim\frac{\alpha}{\beta}=0,那么就说\beta是比\alpha高阶的无穷小,记作\beta = o(\alpha);

        如果 lim\frac{\alpha}{\beta}=\propto,那么就说\beta是比\alpha低阶的无穷小;

        如果 lim\frac{\alpha}{\beta}=c\neq0,那么就说\beta是比\alpha同阶的无穷小;

        如果 lim\frac{\alpha}{\beta^k}=c\neq0k>0那么就说\beta是关于\alpha  k阶的无穷小;

        如果 lim\frac{\alpha}{\beta}=1,那么就说\beta是比\alpha等价无穷小,记作\alpha \sim \beta.

        定理 1:

                \beta\alpha是等价无穷小的充分条件为:\beta=\alpha+o(\alpha).

        定理 2:

              设\alpha \sim \alpha^{\sim},\beta\sim\beta^{\sim}lim\frac{\beta^{\sim}}{\alpha^{\sim}}存在,则:lim\frac{\beta}{\alpha}=lim\frac{\beta^{\sim}}{\alpha^{\sim}}.

第八节 函数的连续性与间断点

        连续性:

                定义:设函数y = f(x)在点x_0的某一领域内有定义,如果

               lim_{\Delta x \rightarrow x_0} \Delta y = lim_{\Delta x \rightarrow x_0} [f(x _0 +\Delta x)-f(x)] =0

或者

               lim_{ x \rightarrow x_0} f(x)=f(x_0)

那么就称函数y = f(x)在点x_0连续.

         间断性:  

        性质(情况):

                                1,在x=x_0没有定义;

                                2,虽在在x=x_0有定义,但是lim_{x\rightarrow x_0}f(x)不存在;

                                3,虽在在x=x_0有i当以,但是lim_{x\rightarrow x_0}f(x) \neq f(x_0).

函数的间断点
类型(type)
第一类间断点第二类间断点
          可去间断点
          跳跃间断点
无穷间断点
         震荡间断点
性质(quality)        情况1 情况1 情况2情况3 
举例(for example)y=f(x)=\{^{x, ~x\neq1,}_{\frac{1}{2},~x=1,}y = sin \frac{1}{x}(x \rightarrow 0) lim_{x \rightarrow \frac{\pi}{2}}tanx = \proptoy = sin \frac{1}{x}(x \rightarrow 0)

##定义与存在没有直接关系,没有定义的函数,可以是无穷大的##

第九节:连续函数的运算与初等函数的连续性

一、连续函数的和、差、积、商的连续性

定理1:设函数f(x)g(x)在点x_0连续,则它们和(差)f\pm g、积f\cdot g及商\frac{f}{g}(当g(x_0) \neq 0时)都在点x_0连续。

二、反函数与复合函数的连续性

定理2:如果函数f(x)在区间I_x上单调增加(或单调减少)且连续,那么它的反函数x=f^{-1}(y)也在对应的区间I_y= \{y|y=f(x),x\in I_x\}上单调增加(或单调减少)且连续

定理3:设函数y = f[g(x)]由函数u=g(x)与函数y=f(u)复合而成,U^o(x_0) \subset D_{f ~o~ g}lim_{x \rightarrow x_0}g(x) = u_0,而函数y=f(u)u = u_0连续,则

                                        lim_{x \rightarrow x_0}f[g(x)] = lim_{u \rightarrow u_0}f(u) = f(u_0)

定理4:设函数y = f[g(x)]由函数u=g(x)与函数y=f(u)复合而成,U^o(x_0) \subset D_{f ~o~ g}.若函数u=g(x)x = x_0连续,且g(x_0)=u_0,而函数y = f(u)u=u_0连续,则复合函数y=f[g(x)]x = x_0也连续.

三、初等函数的连续性

结论:基本初等函数在他们的定义域内都是连续的;一切初等函数在其定义区间内都是连续的。

第十节:闭区间上连续函数的性质

一、有界性与最大值最小值定理

定理1(有界性与最大值最小值定理)在闭区间上连续的函数在该区间上有界且一定能取得它的最大值和最小值。

 二、零点定理与介值定理

定理2(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)f(b)异号(即f(a) \cdot f(b)<0),则在开区间(a,b)内至少有一点\xi,使得

                                                                f(\xi)=0

定理3(介值定理)设函数f(x)在闭区间[a,b]上连续,且在这区间的端点取不同函数值

                                                f(a)=Af(b)=B

则对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点\xi,使得

                                                 f(\xi)=C(a<\xi<b)

推论        在闭区间[a,b]上连续的函数f(x)的值域为闭区间[m,M],其中m与M依次为f(x)[a,b]上最小值与最大值.

三、一直连续性

定义:设函数f(x)在区间I上有定义.如果对于任意给定的正数\varepsilon,总存在正数\delta,使得对于区间I上的任意两点x_1,x_2,当|x_1-x_2|<\delta时,有

                                                |f(x_1)-f(x_2)|<\varepsilon

那么称函数f(x)在区间I上一致连续

定理4(一致连续性定理)如果函数f(x)在闭区间[a,b]上连续,那么在该区间上一致连续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值