前言:
由于写在书本上效率太低,也不方便查找,于是放在了博客上,也便于大家观看,提高学习效率。
第一章,函数与极限
第一节 映射与函数
一、映射
定义: 设X、Y是两个非空集合,如果存在一个法则ƒ,使得对X中每个元素x,按法则ƒ,在Y中有唯一确定的元素y与之对应,那么称ƒ为从X到Y的映射,记作:
ƒ:X Y
其中y称为元素x(在映射下)的像,并记作
,即
而元素x称为元素y(在映射ƒ下)的一个原像;集合X称为映射ƒ的定义域,记作,即
;X中的所有元素的像所组成的集合称为映射ƒ的值域,记作
或者
,即
特性:逆映射,为单射时()可构成反函数
;
二、函数
定义:设数集,则称映射
为定义在D上的函数,通常简记为
其中x称为自变量,y称为因变量,D称为定义域,记作,即
.
特性:1,有界性;2,单调性;3,奇偶性;4,周期性。
##五种初等函数可以组合成基本函数,但是基本函数不是初等函数##
第二节 数列的极限
一、数列极限的定义
定义:设为一数列,如果存在常数a,对于任意给定的正数ε(不论它多么小),总是存在正整数N,使得当n>N时,不等式
都成立,那么就称常数a是数列的极限,或者称数列
收敛于a,记为
或
二、收敛数列的性质
定理1(极限的唯一性)如果数列收敛,那么它的极限唯一.
定理2(收敛数列的有界性)如果数列收敛,那么数列
一定有界.
定理3(收敛数列的保号性)如果,且a>0(或a<0),那么存在正整数N,当n>N时,都有
或
.
定理4(收敛数列与其子数列间的关系)如果数列收敛于a,那么它的任一子数列也收敛,且极限也是a.
第三节 函数的极限
一、函数极限的定义
定义1 设函数在点
的某一去心领域内有定义.如果存在常数A,对于任意给定的正数
(不论它多么小),总存在正数
,使得当
满足不等式
时,对应的函数值
都满足不等式
那么常数A就叫做函数当
时的极限,记作
或
二、函数极限的性质
定理1(函数极限的唯一性)如果存在,那么极限唯一.
定理2(函数极限的局部有界性)如果,那么存在常数
和
,使得当
,有
.
定理3(函数极限的局部保号性)如果,且
(或
),那么存在常数
,使得当
时,有
(或
).
定理4(函数极限与数列极限的关系)如果极限存在,
为函数
的定义域内任一收敛于
的数列,且满足:
(
),那么相应的函数值数列
必定收敛,且
.
第四节 无穷小与无穷大
1,无穷小与无穷大的定义
定义1 如果函数当
时的极限为零,那么称函数
为当
时的无穷小
定义2 设函数在
的某一去心领域内有定义(或
大于某一正数时有定义).如果对一任意给定的正数M(不论它有多大),总是存在正数
(或正数X), 只要
适合不等式
,对应的函数值
总满足不等式
那么称函数是当
时的无穷大.
1,无穷小和无穷大的定理
定理1 在自变量的同一变化过程中,函数
具有极限A的充分必要条件是
,其中
是无穷小.
定理2 在自变量的同一变化过程中,如果为无穷大,那么
为无穷小;反之,如果
为无穷小,且
,那么
为无穷大.
第五节 极限运算法则
定理1 两个无穷小的和是无穷小(归纳:有限个无穷小之和也是无穷小)
定理2 有界函数与无穷小的乘积是无穷小
推论1 常数与无穷小的乘积是无穷小;
推论2 有限个无穷小的乘积是无穷小;
定理3 如果
那么有:
推论1 如果存在,而c为常数,那么
推论2 如果存在,而n是正整数,那么
定理4 设有数列,如果
那么
定理5 如果,而
,那么
定理6 (复合函数的极限运算法则)设函数是由函数
与函数
复合而成,
在点
的某去心领域内有定义,若
且存在
,当
时,有
,则
第六节 极限存在准则,两个重要极限
准则Ⅰ
如果数列,及
满足下列条件:
(1)从某项起,即时, 有
(2)
那么数列的极限存在,且
准则Ⅰ'
如果
(1)
(2)
那么存在,且等于
.
准则Ⅱ
单调有界数列必有极限.
如果数列满足条件
就称数列时单调增加的;如果数列
满足条件
就称数列时单调减少的.单调增加和单调减少的数列统称为单调数列。
准则Ⅱ'
设函数在点
的某个左领域内单调并且有界,则
在
的左极限
必定存在.
柯西(Cauchy)极限存在准则 :数列收敛的充分必要条件是:对于任意给定的正数
,存在正整数N,使得当
时,有
.
第七节 无穷小的比较
定义:
如果 ,那么就说
是比
高阶的无穷小,记作
;
如果 ,那么就说
是比
低阶的无穷小;
如果 ,那么就说
是比
同阶的无穷小;
如果 ,
那么就说
是关于
阶的无穷小;
如果 ,那么就说
是比
等价无穷小,记作
.
定理 1:
与
是等价无穷小的充分条件为:
.
定理 2:
设且
存在,则:
.
第八节 函数的连续性与间断点
连续性:
定义:设函数在点
的某一领域内有定义,如果
或者
那么就称函数在点
连续.
间断性:
性质(情况):
1,在没有定义;
2,虽在在有定义,但是
不存在;
3,虽在在有i当以,但是
.
函数的间断点 | ||||
---|---|---|---|---|
类型(type) | ||||
第一类间断点 | 第二类间断点 | |||
可去间断点
|
跳跃间断点
|
无穷间断点
|
震荡间断点
| |
性质(quality) | 情况1 | 情况1 | 情况2 | 情况3 |
举例(for example) |
##定义与存在没有直接关系,没有定义的函数,可以是无穷大的##
第九节:连续函数的运算与初等函数的连续性
一、连续函数的和、差、积、商的连续性
定理1:设函数和
在点
连续,则它们和(差)
、积
及商
(当
时)都在点
连续。
二、反函数与复合函数的连续性
定理2:如果函数在区间
上单调增加(或单调减少)且连续,那么它的反函数
也在对应的区间
上单调增加(或单调减少)且连续
定理3:设函数由函数
与函数
复合而成,
若
,而函数
在
连续,则
定理4:设函数由函数
与函数
复合而成,
.若函数
在
连续,且
,而函数
在
连续,则复合函数
在
也连续.
三、初等函数的连续性
结论:基本初等函数在他们的定义域内都是连续的;一切初等函数在其定义区间内都是连续的。
第十节:闭区间上连续函数的性质
一、有界性与最大值最小值定理
定理1(有界性与最大值最小值定理)在闭区间上连续的函数在该区间上有界且一定能取得它的最大值和最小值。
二、零点定理与介值定理
定理2(零点定理)设函数在闭区间
上连续,且
与
异号(即
),则在开区间
内至少有一点
,使得
定理3(介值定理)设函数在闭区间
上连续,且在这区间的端点取不同函数值
及
则对于A与B之间的任意一个数C,在开区间内至少有一点
,使得
推论 在闭区间上连续的函数
的值域为闭区间
,其中m与M依次为
在
上最小值与最大值.
三、一直连续性
定义:设函数在区间
上有定义.如果对于任意给定的正数
,总存在正数
,使得对于区间
上的任意两点
,当
时,有
那么称函数在区间
上一致连续
定理4(一致连续性定理)如果函数在闭区间
上连续,那么在该区间上一致连续