洛谷 P10320 勇气(Courage) 题解

文章讲述了如何通过数学分析和对数性质解决一个关于整数x和n的数学问题,涉及连续平方根变换,最终给出一个通用公式并提供了一个C++程序实现,强调了特判在解题中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P10320 勇气(Courage) 题解

题目传送门

题目大意

给定两个整数 x , n x,n x,n 和一种变换方式,要求求出最少经过多少次变换之后 x x x 的值不小于 2 n 2^n 2n

上面所提到的“变换方式”如果使用函数来进行刻画的话,其表达式为:

f ( x i ) = { x 2 , i = 1 ( f ( x i − 1 ) 2 ) 2 , i > 1 f(x_i)=\left\{ \begin{array}{rcl} x^2, & & & i=1\\ (\frac{f(x_{i-1})}{2})^2, & &&i > 1 \end{array} \right. f(xi)={ x2,(2f(xi1))2,i=1i>1

其中, f ( x i ) f(x_i) f(xi) 代表的是经过第 i i i 次变换后得到的数值。

变换分析

首先,我们先在小范围内进行模拟计算,其初始值为 x x x。为了更加直观的展示每组数据的由来,特地列出了原始的表达式和最后化简的表达式,如下表所示:

变换次数 原始表达式 化简表达式
0 0 0 x x x x x x
1 1 1 ( x 2 0 ) 2 \left(\frac{x}{2^0}\right)^2 (20x)2 x 2 2 0 \frac{x^2}{2^0} 20x2
2 2 2 ( x 2 2 ) 2 \left(\frac{x^2}{2}\right)^2 (2x2)2 x 4
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值