P10320 勇气(Courage) 题解
题目大意
给定两个整数 x , n x,n x,n 和一种变换方式,要求求出最少经过多少次变换之后 x x x 的值不小于 2 n 2^n 2n。
上面所提到的“变换方式”如果使用函数来进行刻画的话,其表达式为:
f ( x i ) = { x 2 , i = 1 ( f ( x i − 1 ) 2 ) 2 , i > 1 f(x_i)=\left\{ \begin{array}{rcl} x^2, & & & i=1\\ (\frac{f(x_{i-1})}{2})^2, & &&i > 1 \end{array} \right. f(xi)={ x2,(2f(xi−1))2,i=1i>1
其中, f ( x i ) f(x_i) f(xi) 代表的是经过第 i i i 次变换后得到的数值。
变换分析
首先,我们先在小范围内进行模拟计算,其初始值为 x x x。为了更加直观的展示每组数据的由来,特地列出了原始的表达式和最后化简的表达式,如下表所示:
变换次数 | 原始表达式 | 化简表达式 |
---|---|---|
0 0 0 | x x x | x x x |
1 1 1 | ( x 2 0 ) 2 \left(\frac{x}{2^0}\right)^2 (20x)2 | x 2 2 0 \frac{x^2}{2^0} 20x2 |
2 2 2 | ( x 2 2 ) 2 \left(\frac{x^2}{2}\right)^2 (2x2)2 | x 4 |