C语言数据结构:时间复杂度1

在这里插入图片描述

1.时间复杂度

1.1时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一
个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知
道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法
的时间复杂度

简单点来说,时间复杂度其实是程序的运算次数,那我们来看看下面这些程序的时间复杂度

void Func1(int N)
 {
 int count = 0;
 for (int i = 0; i < N ; ++ i)
 {
    for (int j = 0; j < N ; ++ j)
    {
        ++count;
    }
 }
    
for (int k = 0; k < 2 * N ; ++ k)
 {
    ++count;
 }
 
int M = 10;
 while (M--)
 {
    ++count;
 }
 printf("%d\n", count);
 }

我们可以通过运算的次数算出这个程序的运算次数:
在这里插入图片描述

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

也就是说我们只看影响最大的那个项,本质上是判断它是属于哪个量级的,通过这个方法我们可以判断Func1(上面的代码)时间复杂度:
在这里插入图片描述
我们再来练习几个:

// 计算Func2的时间复杂度?
void Func2(int N)
 {
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
 
    int M = 10;
    while (M--)
    {
        ++count;
    }
 
    printf("%d\n", count);
 }

F(N) = 2^n + 10 ==> O(N)
当n趋近于无穷大时,2的n次方和5的n次方已经无差异了,所以都可以看成O(N)

// 计算Func3的时间复杂度?
void Func3(int N, int M)
 {
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
        ++count;
    }
 
    for (int k = 0; k < N ; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
 }

O(M+N)
这里如果M远大于N则是O(M),反之则为O(N),而这里就可以看出时间复杂度实际上计算的是最坏的条件

// 计算Func4的时间复杂度?
void Func4(int N)
 {
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
 }

O(1)

2.时间复杂度的相关练习题

2.1消失的数字OJ链接

在这里插入图片描述
这道题上就有时间复杂度的限制了
这里提供三个思路:

思路一:先排序,在查找

查找:我们通过计算最坏的结果,进行全部遍历的复杂度是: O(N)
排序:1.冒泡排序

int main() {
	int arr[10] = { 9,8,7,6,5,4,3,2,1,0 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	for (int i = 0; i < sz - 1; i++)
	{
		for (int j = 0; j < sz - 1 - i; j++ )
		{
			int tmp = arr[j];
			arr[j] = arr[j + 1];
			arr[j + 1] = tmp;
		}
	}
	for (int i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

最坏的结果是:所有的数据全部反过来次数为 N-1+N-2+…+2+1
所以F(N)=N*(N-1)/2 ==> O(N^2)
那么这个排序就不行

2.qsort排序
这个排序为快排,它的复杂度我们后面计算,这里了解一下:O(N*logN)
那么我们第一个思路就全都行不通

思路二:先求和然后依次减去数组中的值,剩下的就是消失的数字

这种方法最坏的结果也就是两次遍历也是O(N)
写成代码:

int missingNumber(int* nums, int numsSize) {
    int N = numsSize;
    int ret = N * (N + 1) / 2;
    for (int i = 0; i < numsSize; i++) {
        ret -= nums[i];
    }
    return ret;
}

思路三:异或

原理:相同的值异或就是0;0和任何数异或就是任何数
这里的时间复杂度也是O(N)

int missingNumber(int* nums, int numsSize) {
    int N = numsSize;
    int x = 0;
    for (int i = 0; i < numsSize; i++) {
        x ^= nums[i];
    }
    for (int i = 0; i < N + 1; i++) {
        x ^= i;
    }
    return x;
}

2.2 旋转数组OJ链接

在这里插入图片描述
这个题先提供两种解法,后面的解法要到空间复杂度的时候再提出

思路一:直接进行移动

移动2k次其实就是移动k次,所以我们就应该先看看真正移动了多少次

void rotate(int* nums, int numsSize, int k) {
    k %= numsSize;
    while (k--) {
        int tmp = nums[numsSize - 1];
        for (int i = numsSize - 2; i >= 0; i--) {
            nums[i + 1] = nums[i];
        }
        nums[0] = tmp;
    }
}

但是这里的时间复杂度太大,导致无法通过 O(K*N)

思路二:将前n-k个数逆置,再将后k个数逆置,让后整体逆置

将前n-k个数逆置,再将后k个数逆置,让后整体逆置就会的到结果数组

void exchange(int* nums, int left, int right) {
    while (left < right) {
        int tmp = nums[left];
        nums[left] = nums[right];
        nums[right] = tmp;
        left++;
        right--;
    }
}

void rotate(int* nums, int numsSize, int k) {
    k %= numsSize;
    exchange(nums, 0, numsSize - 1 - k);
    exchange(nums, numsSize - k, numsSize - 1);
    exchange(nums, 0, numsSize - 1);
}

在这里插入图片描述
传参时要注意区分逆置的范围
这样通过一个循环就可以搞定这道题了,那么时间复杂度相较于上一个就少得多

  • 26
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值