[HUBUCTF 2022 新生赛]messy_traffic 不打开wireshark直接用随波逐流一键梭哈

1.打开发现是一个流量包

平常思路是直接用wireshark打开一步步分析

但是直接用随波逐流这个工具可以直接梭哈

2.打开随波逐流

下载地址:www.1o1o.xyz

点击右上角的文件》点击binwalk提取

3.打开分离后的压缩包

发现其中的压缩包需要密码

再回到随波逐流,点击文件》点击pacp流量分析

然后优先寻找tcp

疑似压缩包密码

SignUpForHUBUMars@1405

4.拿到flag

NSSCTF{01af2547082a7c800b20123f030b2a07}

5.总结

没有用wireshark  当然用wireshark做也很快  只是分离压缩包那一步有点难

Messy GA算法是一种基于遗传算法(Genetic Algorithm)的优化算法。基于遗传算法原理的优化算法是通过模拟生物进化过程来寻找最优解的方法。而Messy GA算法则是对传统遗传算法的一种改进。 Messy GA算法的核心思想是引入不确定性变量,也就是“杂成性”。杂成性是指在染色体的每个位置上可能存在多个基因的情况。这样一来,一个个体的基因序列就不再是固定的,而是可以从多个可能的基因中选择。 Messy GA算法之所以引入杂成性,是为了增加搜索空间的多样性,提高算法的全局搜索能力。杂成性让每个个体都具有更多的选择空间,在交叉和突变操作时,可以选择更多的基因组合,以期得到更好的解。 然而,Messy GA算法也存在一些问题。首先,由于增加了不确定性,个体的基因串变得更长,从而导致搜索空间的维度增加。这会使得算法的收敛速度变慢,搜索效率下降。此外,由于杂成性使得个体的基因表达不再唯一,使得个体之间的比较和选择变得困难。 为了解决这些问题,Messy GA算法还可以与其他优化算法相结合,如模拟退火算法、粒子群优化算法等,以增强搜索的效果。另外,通过适当的参数设置和策略调整,也可以在一定程度上改善算法的性能。 总之,Messy GA算法在遗传算法的基础上引入了杂成性,以增加搜索空间的多样性,提高全局搜索能力。虽然算法存在一些问题,但通过与其他优化算法的结合和参数调整,可以优化算法的性能,提高搜索效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值