JAVA毕业设计186—基于Java+Springboot+vue3的档案管理系统(源代码+数据库)

毕设所有选题:
https://blog.csdn.net/2303_76227485/article/details/131104075

基于Java+Springboot+vue3的档案管理系统(源代码+数据库)186

一、系统介绍

本项目前后端分离(可以改为ssm版本),分为用户、管理员、超级管理员三种角色

1、用户:

  • 注册、登录、公告、档案信息、我的收藏、个人信息、密码修改

2、管理员:

  • 档案信息管理

3、超级管理员:

  • 管理员管理、用户管理、档案信息管理、部门管理、档案类型管理、新闻资讯管理、轮播图管理

二、所用技术

后端技术栈:

  • Springboot
  • mybatisPlus
  • Mysql
  • Maven

前端技术栈:

  • Vue3
  • Vue-router
  • axios
  • elementPlus

三、环境介绍

基础环境 :IDEA/eclipse, JDK1.8, Mysql5.7及以上, Maven3.6, node14, navicat

所有项目以及源代码本人均调试运行无问题 可支持远程调试运行

四、页面截图

1、用户:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、管理员:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、超级管理员:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、浏览地址

前台地址:http://localhost:8082

用户账号密码:用户账号1/123456

后台地址:http://localhost:8081

管理员账户密码:管理员账号1/123456

超级管理员账户密码:admin/admin

六、部署教程

  1. 使用Navicat或者其它工具,在mysql中创建对应名称的数据库,并执行项目的sql文件

  2. 使用IDEA/Eclipse导入server_code项目,若为maven项目请选择maven,等待依赖下载完成

  3. 修改application.yml里面的数据库配置,src/main/java/com/SpringbootSchemaApplication.java启动后端项目

  4. vscode或idea打开client_code后台项目

  5. 在编译器中打开terminal,执行npm install 依赖下载完成后执行 npm run serve,执行成功后会显示访问地址

  6. vscode或idea打开manage_code后台项目

  7. 在编译器中打开terminal,执行npm install 依赖下载完成后执行 npm run serve,执行成功后会显示访问地址

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装Python Git 工具,因为这些对于获取源码管理依赖项至关重要。 #### 安装必要的软件包支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值