1.概念
Matplotlib 库:是一款用于数据可视化的 Python 软件包,支持跨平台运行,它能够根据 NumPy ndarray 数组来绘制 2D 图像,它使用简单、代码清晰易懂
2.安装
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple/
3.常用API
3.1 绘图类型
函数名称 | 描述 |
---|---|
Bar | 绘制条形图 |
Barh | 绘制水平条形图 |
Boxplot | 绘制箱型图 |
Hist | 绘制直方图 |
his2d | 绘制2D直方图 |
Pie | 绘制饼状图 |
Plot | 在坐标轴上画线或者标记 |
Polar | 绘制极坐标图 |
Scatter | 绘制x与y的散点图 |
Stackplot | 绘制堆叠图 |
Stem | 用来绘制二维离散数据绘制(又称为火柴图) |
Step | 绘制阶梯图 |
Quiver | 绘制一个二维按箭头 |
3.2 Image 函数
函数名称 | 描述 |
---|---|
Imread | 从文件中读取图像的数据并形成数组 |
Imsave | 将数组另存为图像文件 |
Imshow | 在数轴区域内显示图像 |
3.3 Axis 函数
函数名称 | 描述 |
---|---|
Axes | 在画布(Figure)中添加轴 |
Text | 向轴添加文本 |
Title | 设置当前轴的标题 |
Xlabel | 设置x轴标签 |
Xlim | 获取或者设置x轴区间大小 |
Xscale | 设置x轴缩放比例 |
Xticks | 获取或设置x轴刻标和相应标签 |
Ylabel | 设置y轴的标签 |
Ylim | 获取或设置y轴的区间大小 |
Yscale | 设置y轴的缩放比例 |
Yticks | 获取或设置y轴的刻标和相应标签 |
3.4 Figure 函数
函数名称 | 描述 |
---|---|
Figtext | 在画布上添加文本 |
Figure | 创建一个新画布 |
Show | 显示数字 |
Savefig | 保存当前画布 |
Close | 关闭画布窗口 |
PyLab 是一个面向 Matplotlib 的绘图库接口,其语法和 MATLAB 十分相近。
使用 pyplot 需要显式地导入 numpy 和 matplotlib.pyplot,代码量相对较多。
pyplot 是 matplotlib 中的一个模块,提供了类似于 MATLAB 的绘图接口。它是一个更底层的接口,提供了更多的控制和灵活性。
import matplotlib.pyplot as plt
import numpy as np
5.常用函数
5.1 plot 函数
pylab.plot 是一个用于绘制二维图形的函数。它可以根据提供的 x 和 y 数据点绘制线条和/或标记。
语法:
pylab.plot(x, y, format_string=None, **kwargs)
参数:
- x: x 轴数据,可以是一个数组或列表。
- y: y 轴数据,可以是一个数组或列表。
- format_string: 格式字符串,用于指定线条样式、颜色等。
- **kwargs: 其他关键字参数,用于指定线条的属性。
plot 函数可以接受一个或两个数组作为参数,分别代表 x 和 y 坐标。如果你只提供一个数组,它将默认用作 y 坐标,而 x 坐标将默认为数组的索引。
格式字符串:
格式字符串由颜色、标记和线条样式组成。例如:
颜色:
‘b’:蓝色 ‘g’:绿色 ‘r’:红色 ‘c’:青色 ‘m’:洋红色 ‘y’:黄色 ‘k’:黑色 ‘w’:白色
标记:
‘.’:点标记
‘,’:像素标记
‘o’:圆圈标记
‘v’:向下三角标记
‘^’:向上三角标记
‘<’:向左三角标记
‘>’:向右三角标记
‘s’:方形标记
‘p’:五边形标记
‘*’:星形标记
‘h’:六边形标记1
‘H’:六边形标记2
‘+’:加号标记
‘x’:叉号标记
‘D’:菱形标记
‘d’:细菱形标记
‘|’:竖线标记
‘_’:横线标记
线条样式:
‘-’:实线 ‘–’:虚线 ‘-.’:点划线 ‘:’:点线
案例:
# 导入 pylab 库
import pylab
# 创建数据,使用 linspace 函数
# pylab.linspace 函数生成一个等差数列。这个函数返回一个数组,数组中的数值在指定的区间内均匀分布。
x = pylab.linspace(-6, 6, 40)
# 基于 x 构建 y 的数据
y = x**2
# 绘制图形
pylab.plot(x,y,'r:')
# 展示图形
pylab.show()
5.2 figure 函数
figure() 函数来实例化 figure 对象,即绘制图形的对象,可以通过这个对象,来设置图形的样式等
参数:
- figsize:指定画布的大小,(宽度,高度),单位为英寸
- dpi:指定绘图对象的分辨率,即每英寸多少个像素,默认值为80
- facecolor:背景颜色
- dgecolor:边框颜色
- frameon:是否显示边框
5.2.1 figure.add_axes()
Matplotlib 定义了一个 axes 类(轴域类),该类的对象被称为 axes 对象(即轴域对象),它指定了一个有数值范围限制的绘图区域。在一个给定的画布(figure)中可以包含多个 axes 对象,但是同一个 axes 对象只能在一个画布中使用。
参数:
是一个包含四个元素的列表或元组,格式为 [left, bottom, width, height],其中:
left 是坐标原点距离左边线多少, bottom 是坐标原点距离底边多少,范围从 0 到 1。
width 和 height 是轴域的宽度和高度,范围从 0 到 1。
案例:
# 创建一个新的图形
fig = pl.figure()
# 添加第一个轴域
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
x = pl.linspace(0, 10, 100)
y = pl.sin(x)
ax.plot(x, y)
# 显示图形
pl.show()
6.2.2 axes.legend()
legend 函数用于添加图例,以便识别图中的不同数据系列。图例会自动显示每条线或数据集的标签。
参数:
- labels 是一个字符串序列,用来指定标签的名称
- loc 是指定图例位置的参数,其参数值可以用字符串或整数来表示
- handles 参数,它也是一个序列,它包含了所有线型的实例
案例:
将label定义在plot方法中,再调用legend方法
from matplotlib import pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)
# 创建图形和轴域
fig, ax = plt.subplots()
# 绘制数据
line1, = ax.plot(x, y1, label='Sine Function')
line2, = ax.plot(x, y2, label='Cosine Function')
# 添加图例,手动指定标签
ax.legend(loc='best')
# 显示图形
plt.show()
legend() 函数 loc 参数:
位置 | 字符串表示 | 整数数字表示 |
---|---|---|
自适应 | Best | 0 |
右上方 | upper right | 1 |
左上方 | upper left | 2 |
左下 | lower left | 3 |
右下 | lower right | 4 |
右侧 | right | 5 |
居中靠左 | center left | 6 |
居中靠右 | center right | 7 |
底部居中 | lower center | 8 |
上部居中 | upper center | 9 |
中部 | center | 10 |
5.3 标题中文乱码
如果标题设置的是中文,会出现乱码
局部处理:
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
全局处理:
首先,找到 matplotlibrc 文件的位置,可以使用以下代码:
import matplotlib
print(matplotlib.matplotlib_fname())
然后,修改 matplotlibrc 文件,找到 font.family 和 font.sans-serif 项,设置为支持中文的字体,如 SimHei。
同时,设置 axes.unicode_minus 为 False 以正常显示负号。
5.4 subplots 函数
subplots 是 matplotlib.pyplot 模块中的一个函数,用于创建一个包含多个子图(subplots)的图形窗口。subplots 函数返回一个包含所有子图的数组,这使得你可以更方便地对每个子图进行操作。
语法:
fig, axs = plt.subplots(nrows, ncols, figsize=(width, height))
参数:
- nrows: 子图的行数。
- ncols: 子图的列数。
- figsize: 图形的尺寸,以英寸为单位。
案例:
import matplotlib.pyplot as plt
import numpy as np
# 创建数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.log(x)
y3 = x**2
# 创建图形和子图
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
# 第一个子图
axs[0].plot(x, y1, label='sin(x)')
axs[0].set_title('Sine Wave')
axs[0].set_xlabel('X-axis')
axs[0].set_ylabel('Y-axis')
axs[0].legend()
# 第二个子图
axs[1].plot(x, y2, label='cos(x)')
axs[1].set_title('Cosine Wave')
axs[1].set_xlabel('X-axis')
axs[1].set_ylabel('Y-axis')
axs[1].legend()
# 第三个子图
axs[2].plot(x, y3, label='tan(x)')
axs[2].set_title('Tangent Wave')
axs[2].set_xlabel('X-axis')
axs[2].set_ylabel('Y-axis')
axs[2].legend()
# 显示图形
plt.tight_layout()
plt.show()
5.5 subplot2gird 函数
subplot2grid 是 matplotlib.pyplot 模块中的一个函数,用于在网格中创建子图。subplot2grid 允许你更灵活地指定子图的位置和大小,以非等分的形式对画布进行切分,使得你可以创建复杂的布局。
语法:
ax = plt.subplot2grid(shape, loc, rowspan=1, colspan=1)
参数:
- shape: 网格的形状,格式为 (rows, cols),表示网格的行数和列数,在figure中式全局设置。
- loc: 子图的起始位置,格式为 (row, col),表示子图在网格中的起始行和列。
- rowspan: 子图占据的行数,默认为 1。
- colspan: 子图占据的列数,默认为 1。
案例:
import matplotlib.pyplot as plt
import numpy as np
# 创建数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.tan(x)
y4 = np.exp(x)
fig = plt.figure(figsize=(12, 8))
# 第一个子图
ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=2)
ax1.plot(x, y1, label='sin(x)')
ax1.legend()
# 第二个子图
ax2 = plt.subplot2grid((3, 3), (0, 2))
ax2.plot(x, y2, label='cos(x)')
ax2.legend()
# 第三个子图
ax3 = plt.subplot2grid((2, 2), (1, 0))
ax3.plot(x, y3, label='tan(x)')
ax3.legend()
# 第四个子图
ax4 = plt.subplot2grid((2, 2), (1, 1))
ax4.plot(x, y4, label='exp(x)')
ax4.legend()
# 显示图形
plt.tight_layout()
plt.show()
6.7 grid 函数
grid 是用于在图形中添加网格线的函数。网格线可以帮助读者更清晰地理解数据的分布和趋势。grid 函数可以应用于 Axes 对象,用于在子图中添加网格线。
语法:
ax.grid(b=None, which='major', axis='both', **kwargs)
参数:
- b: 是否显示网格线,默认为 None,表示根据当前设置显示或隐藏网格线。
- which: 指定要显示的网格线类型,可以是 ‘major’(主刻度)、‘minor’(次刻度)或 ‘both’(主刻度和次刻度)。
- axis: 指定要显示网格线的轴,可以是 ‘both’(两个轴)、‘x’(X 轴)或 ‘y’(Y 轴)。
- **kwargs: 其他可选参数,用于定制网格线的外观,如 color、linestyle、linewidth 等。
案例:
# 引入 pyplot
from matplotlib import pyplot as plt
# 引入 numpy
import numpy as np
x = np.linspace(0, 10, 100)
y = np.sin(x)
fig = plt.figure()
axs = fig.add_axes([0.1, 0.1, 0.8, 0.8])
axs.plot(x, y, label='sin(x)')
axs.set_xlabel('X-axis')
axs.set_ylabel('Y-axis')
axs.set_title('Sin Function')
axs.legend(loc='upper center')
axs.grid(True, axis='x', color='red', ls='--', lw=0.5)
plt.show()
6.8 xscale 和 yscale 函数
xscale 和 yscale 函数用于设置坐标轴的刻度类型。默认情况下,坐标轴的刻度类型是线性的,但你可以使用 xscale 和 yscale 函数将其更改为对数刻度或其他类型的刻度。
语法:
ax.set_xscale(value)
ax.set_yscale(value)
参数:
value: 刻度类型,可以是 ‘linear’(线性刻度)、‘log’(对数刻度)、‘symlog’(对称对数刻度)、‘logit’(对数几率刻度)等。
案例:
# 引入 pyplot
from matplotlib import pyplot as plt
# 引入 numpy
import numpy as np
# 创建数据
x = np.linspace(0, 10, 100)
y = np.exp(x)
# 创建图形和子图
fig, ax = plt.subplots()
# 绘制数据
ax.plot(x, y, label='exp(x)')
# 设置标题和标签
ax.set_title('Exponential Function')
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
# 添加图例
ax.legend()
ax.set_yscale('log')
# 显示图形
plt.show()
6.9 set_xlim 和 set_ylim 函数
set_xlim 和 set_ylim 函数用于设置坐标轴的范围。
语法:
ax.set_xlim(left, right)
ax.set_ylim(bottom, top)
参数:
- left 和 right: X 轴的范围,left 是 X 轴的最小值,right 是 X 轴的最大值。
- bottom 和 top: Y 轴的范围,bottom 是 Y 轴的最小值,top 是 Y 轴的最大值。
案例:
# 引入 pyplot
from matplotlib import pyplot as plt
# 引入 numpy
import numpy as np
import math
# 创建数据
x = np.linspace(0, 10, 100)
y = np.sin(x)
# 创建图形和子图
fig, ax = plt.subplots()
# 绘制数据
ax.plot(x, y, label='sin(x)')
# 设置标题和标签
ax.set_title('Sine Wave')
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
# 设置 X 轴和 Y 轴的范围
ax.set_xlim(0, 2*math.pi)
ax.set_ylim(-1.5, 1.5)
# 添加图例
ax.legend()
# 显示图形
plt.show()
6.10 set_xticks 和 set_yticks 函数
Matplotlib 可以自动根据因变量和自变量设置坐标轴范围,也可以通过 set_xticks() 和 set_yticks() 函数手动指定刻度,接收一个列表对象作为参数,列表中的元素表示对应数轴上要显示的刻度。
语法:
ax.set_xticks(ticks)
ax.set_yticks(ticks)
参数:
ticks: 一个包含刻度位置的列表或数组。
案例:
# 引入 pyplot
from matplotlib import pyplot as plt
# 引入 numpy
import numpy as np
# 数学库
import math
# 创建数据
x = np.linspace(0, 10, 100)
y = np.sin(x)
# 创建图形和子图
fig, ax = plt.subplots()
# 绘制数据
ax.plot(x, y, label='sin(x)')
# 设置标题和标签
ax.set_title('Sine Wave')
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
# 设置 X 轴和 Y 轴的刻度位置
ax.set_xticks([0, 2, 4, 6, 8, 10])
ax.set_yticks([-1, -0.5, 0, 0.5, 1])
# 添加图例
ax.legend()
# 显示图形
plt.show()
6.11 twinx 和 twiny 函数
twinx 和 twiny 函数用于在同一个图形中创建共享 X 轴或 Y 轴的多个子图。twinx 函数用于创建共享 X 轴的子图,twiny 函数用于创建共享 Y 轴的子图。
语法:
ax2 = ax.twinx()
ax2 = ax.twiny()
说明:
- ax: 原始的 Axes 对象。
- ax2: 新的 Axes 对象,共享原始 Axes 对象的 X 轴或 Y 轴。
案例:
# 引入 pyplot
from matplotlib import pyplot as plt
# 引入 numpy
import numpy as np
# 创建数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.exp(x)
# 创建图形和子图
fig, ax1 = plt.subplots()
# 绘制第一个数据集
ax1.plot(x, y1, 'b-', label='sin(x)')
ax1.set_xlabel('X-axis')
ax1.set_ylabel('sin(x)', color='b')
# 创建共享 X 轴的子图
ax2 = ax1.twinx()
# 绘制第二个数据集
ax2.plot(x, y2, 'r-', label='exp(x)')
ax2.set_ylabel('exp(x)', color='r')
ax1.legend()
ax2.legend()
# 显示图形
plt.show()
6.12 柱状图
柱状图(Bar Chart)是一种常用的数据可视化工具,用于展示分类数据的分布情况。
语法:
ax.bar(x, height, width=0.8, bottom=None, align='center', **kwargs)
参数:
- x: 柱状图的 X 轴位置。
- height: 柱状图的高度。
- width: 柱状图的宽度,默认为 0.8。
- bottom: 柱状图的底部位置,默认为 0。
- align: 柱状图的对齐方式,可以是 ‘center’(居中对齐)或 ‘edge’(边缘对齐)。
- **kwargs: 其他可选参数,用于定制柱状图的外观,如 color、edgecolor、linewidth 等。
案例1:
from matplotlib import pyplot as plt
import numpy as np
# 数据
categories = ['A', 'B', 'C', 'D']
values = [20, 35, 30, 25]
# 创建图形和子图
fig, ax = plt.subplots()
# 绘制柱状图
ax.bar(categories, values, color='skyblue', linewidth=1.5, width=0.6)
# 设置标题和标签
ax.set_title('Customized Bar Chart')
ax.set_xlabel('Categories')
ax.set_ylabel('Values')
# 显示图形
plt.show()
**案例2:**堆叠柱状图
# 数据
categories = ['A', 'B', 'C', 'D']
values1 = [20, 35, 30, 25]
values2 = [15, 25, 20, 10]
# 创建图形和子图
fig, ax = plt.subplots()
# 绘制第一个数据集的柱状图
ax.bar(categories, values1, color='skyblue', label='Values 1')
# 绘制第二个数据集的柱状图,堆叠在第一个数据集上
ax.bar(categories, values2, bottom=values1, color='lightgreen', label='Values 2')
# 设置标题和标签
ax.set_title('Stacked Bar Chart')
ax.set_xlabel('Categories')
ax.set_ylabel('Values')
# 添加图例
ax.legend()
# 显示图形
plt.show()
说明:
bottom=values1:绘制第二个数据集的柱状图,堆叠在第一个数据集上
**案例3:**分组柱状图
# 数据
categories = ['A', 'B', 'C', 'D']
values1 = [20, 35, 30, 25]
values2 = [15, 25, 20, 10]
# 创建图形和子图
fig, ax = plt.subplots()
# 计算柱状图的位置
x = np.arange(len(categories))
width = 0.35
# 绘制第一个数据集的柱状图
ax.bar(x - width/2, values1, width, color='skyblue', label='Values 1')
# 绘制第二个数据集的柱状图
ax.bar(x + width/2, values2, width, color='lightgreen', label='Values 2')
# 设置 X 轴标签
ax.set_xticks(x)
ax.set_xticklabels(categories)
# 设置标题和标签
ax.set_title('Grouped Bar Chart')
ax.set_xlabel('Categories')
ax.set_ylabel('Values')
# 添加图例
ax.legend()
# 显示图形
plt.show()
6.13 直方图
直方图(Histogram)是一种常用的数据可视化工具,用于展示数值数据的分布情况。
语法:
ax.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, **kwargs)
参数:
- x: 数据数组。
- bins: 直方图的柱数,可以是整数或序列。
- range: 直方图的范围,格式为 (min, max)。
- density: 是否将直方图归一化,默认为 False。
- weights: 每个数据点的权重。
- cumulative: 是否绘制累积直方图,默认为 False。
- **kwargs: 其他可选参数,用于定制直方图的外观,如 color、edgecolor、linewidth 等。
案例:
from matplotlib import pyplot as plt
import numpy as np
# 生成随机数据,生成均值为 0,标准差为 1 的标准正态分布的随机样本
data = np.random.randn(1000)
# 创建图形和子图
fig, ax = plt.subplots()
# 绘制直方图
ax.hist(data, bins=30, color='skyblue', edgecolor='black')
# 设置标题和标签
ax.set_title('Simple Histogram')
ax.set_xlabel('Value')
ax.set_ylabel('Frequency')
# 显示图形
plt.show()
6.14 饼图
饼图(Pie Chart)是一种常用的数据可视化工具,用于展示分类数据的占比情况。
语法:
ax.pie(x, explode=None, labels=None, colors=None, autopct=None, shadow=False, startangle=0, **kwargs)
参数:
- x: 数据数组,表示每个扇区的占比。
- explode: 一个数组,表示每个扇区偏离圆心的距离,默认为 None。
- labels: 每个扇区的标签,默认为 None。
- colors: 每个扇区的颜色,默认为 None。
- autopct: 控制显示每个扇区的占比,可以是格式化字符串或函数,默认为 None。
- shadow: 是否显示阴影,默认为 False。
- startangle: 饼图的起始角度,默认为 0。
- **kwargs: 其他可选参数,用于定制饼图的外观。
案例:
from matplotlib import pyplot as plt
import numpy as np
# 数据
labels = ['A', 'B', 'C', 'D']
sizes = [15, 30, 45, 10]
# 创建图形和子图
fig, ax = plt.subplots()
# 绘制饼图
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
# 设置标题
ax.set_title('Simple Pie Chart')
# 显示图形
plt.show()
6.15 折线图
使用 plot 函数
案例:
from matplotlib import pyplot as plt
# 创建数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)
# 创建图形和子图
fig, ax = plt.subplots()
# 绘制多条折线图
ax.plot(x, y1, label='sin(x)', color='blue')
ax.plot(x, y2, label='cos(x)', color='red')
# 设置标题和标签
ax.set_title('Multiple Line Charts')
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
# 添加图例
ax.legend()
# 显示图形
plt.show()
6.16 散点图
散点图(Scatter Plot)是一种常用的数据可视化工具,用于展示两个变量之间的关系。
语法:
ax.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors=None, **kwargs)
参数:
- x: X 轴数据。
- y: Y 轴数据。
- s: 点的大小,可以是标量或数组。
- c: 点的颜色,可以是标量、数组或颜色列表。
- marker: 点的形状,默认为 ‘o’(圆圈)。
- cmap: 颜色映射,用于将颜色映射到数据。
- norm: 归一化对象,用于将数据映射到颜色映射。
- vmin, vmax: 颜色映射的最小值和最大值。
- alpha: 点的透明度,取值范围为 0 到 1。
- linewidths: 点的边框宽度。
- edgecolors: 点的边框颜色。
- **kwargs: 其他可选参数,用于定制散点图的外观。
案例:
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig = plt.figure()
axes = fig.add_axes([.1,.1,.8,.8])
x = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
data = [
[120, 132, 101, 134, 90, 230, 210],
[220, 182, 191, 234, 290, 330, 310],
]
y0 = data[0]
y1 = data[1]
axes.scatter(x,y0,color='red')
axes.scatter(x,y1,color='blue')
axes.set_title('散点图')
axes.set_xlabel('日期')
axes.set_ylabel('数量')
plt.legend(labels=['Email', 'Union Ads'],)
plt.show()
marker常用的参数值:
- ‘o’: 圆圈
- ‘s’: 正方形
- ‘D’: 菱形
- ‘^’: 上三角形
- ‘v’: 下三角形
- ‘>’: 右三角形
- ‘<’: 左三角形
- ‘p’: 五边形
- ‘*’: 星形
- ‘+’: 加号
- ‘x’: 叉号
- ‘.’: 点
- ‘,’: 像素
- ‘1’: 三叉戟下
- ‘2’: 三叉戟上
- ‘3’: 三叉戟左
- ‘4’: 三叉戟右
- ‘h’: 六边形1
- ‘H’: 六边形2
- ‘d’: 小菱形
- ‘|’: 竖线
- ‘_’: 横线
6.13 图片读取
plt.imread 是 Matplotlib 库中的一个函数,用于读取图像文件并将其转换为 NumPy 数组。这个函数非常方便,可以轻松地将图像加载到 Python 中进行处理或显示。
参数
fname
: 图像文件的路径(字符串)。format
: 图像格式(可选)。如果未指定,imread
会根据文件扩展名自动推断格式。
返回值
- 返回一个 NumPy 数组,表示图像的像素数据。数组的形状取决于图像的格式:
- 对于灰度图像,返回一个二维数组
(height, width)
。 - 对于彩色图像,返回一个三维数组
(height, width, channels)
,其中channels
通常是 3(RGB)或 4(RGBA)。
- 对于灰度图像,返回一个二维数组
案例:
from matplotlib import pyplot as plt
import numpy as np
import os
def read_img():
dirpath = os.path.dirname(__file__)
print(dirpath)
filepath = os.path.relpath(os.path.join(dirpath, 'leaf.png'))
print(filepath)
img = plt.imread(filepath)
print(img.shape)
plt.imshow(img)
plt.show()
img1 = np.transpose(img, (2, 0, 1))
for channel in img1:
plt.imshow(channel)
plt.show()
if __name__ == '__main__':
read_img()