
Py
文章平均质量分 94
灵犀拾荒者
ChatGPT+机器学习+群智能算法+神经网络
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【PINN】DeepXDE学习训练营(39)——pinn_forward-Helmholtz_Dirichlet_2d.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-30 10:00:00 · 779 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(38)——pinn_forward-Helmholtz_Dirichlet_2d_HPO.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-29 10:00:00 · 766 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(37)——pinn_forward-heat.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-28 10:00:00 · 855 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(36)——pinn_forward-heat_resample.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-27 10:00:00 · 971 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(35)——pinn_forward-fractional_Poisson_3d.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-26 10:00:00 · 625 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(34)——pinn_forward-fractional_Poisson_2d.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-25 10:00:00 · 947 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(33)——pinn_forward-fractional_Poisson_1d.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-24 11:16:23 · 838 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(32)——pinn_forward-fractional_diffusion_1d.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-23 20:58:34 · 1046 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(31)——pinn_forward-Euler_beam.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-22 10:00:00 · 904 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(30)——pinn_forward-elasticity_plate.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-21 10:00:00 · 1258 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(29)——pinn_forward-diffusion_reaction.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-20 10:00:00 · 1168 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(28)——pinn_forward-diffusion_1d.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-19 10:00:00 · 722 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(27)——pinn_forward-diffusion_1d_resample.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-18 10:00:00 · 598 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(26)——pinn_forward-diffusion_1d_exactBC.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-17 10:00:00 · 964 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(25)——pinn_forward-Burgers.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-16 20:01:38 · 899 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(24)——pinn_forward-Burgers_RAR.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-15 10:00:00 · 814 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(23)——pinn_forward-Beltrami_flow.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-14 10:00:00 · 776 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(22)——pinn_forward-Allen_Cahn.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-13 10:00:00 · 2285 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(21)——operator-stokes_aligned_zcs_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-12 10:00:00 · 973 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(20)——operator-stokes_aligned_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-11 10:00:00 · 1192 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(19)——operator-poisson_1d_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-10 10:00:00 · 629 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(18)——operator-diff_rec_unaligned_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-09 10:00:00 · 729 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(17)——operator-diff_rec_aligned_zcs_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-08 10:00:00 · 949 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(16)——operator-diff_rec_aligned_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-07 10:00:00 · 739 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(15)——operator-antiderivative_unaligned.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-06 10:00:00 · 633 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(14)——operator-antiderivative_unaligned_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-05 10:00:00 · 983 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(13)——operator-antiderivative_aligned.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-04 10:00:00 · 1274 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(12)——operator-antiderivative_aligned_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-03 12:00:28 · 1025 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(11)——operator-advection_unaligned_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-02 10:00:00 · 956 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(10)——operator-advection_unaligned_pideeponet_2d.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-05-01 10:00:00 · 1052 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(9)——operator-advection_aligned_pideeponet_2d.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-30 10:00:00 · 1099 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(8)——operator-advection_aligned_pideeponet.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-29 10:00:00 · 932 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(7)——operator-ADR_solver.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-28 10:00:00 · 1882 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(6)——function-mf_func.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-27 10:00:00 · 910 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(5)——function-mf_dataset.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-26 10:00:00 · 1857 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(4)——function-func.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-25 10:00:00 · 931 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(3)——function-func_uncertainty.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-24 10:00:00 · 1400 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(2)——function-dataset.py
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-23 10:00:00 · 1316 阅读 · 0 评论 -
【PINN】DeepXDE学习训练营(1)——深度学习赋能微分方程求解的探索之旅
DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。原创 2025-04-22 10:00:00 · 1281 阅读 · 0 评论 -
【KAN】KAN神经网络学习训练营(35)——Example 13:相变
KAN神经网络(Kolmogorov–Arnold Networks)是一种基于Kolmogorov-Arnold表示定理的新型神经网络架构。该定理指出,任何多元连续函数都可以表示为有限个单变量函数的组合。与传统多层感知机(MLP)不同,KAN通过可学习的激活函数和结构化网络设计,在函数逼近效率和可解释性上展现出潜力。原创 2025-04-21 10:00:00 · 1934 阅读 · 0 评论