- 博客(173)
- 收藏
- 关注
原创 【深度智能】:迈向高级时代的人工智能全景指南
本学习路线详细分解了人工智能学习过程中涉及的各个知识点,并通过具体案例对其进行了深入解析。学习者应从基础知识入手,逐步深入到机器学习和深度学习领域,再到高级应用、项目实践和前沿研究,持续学习和实践,不断提升自己的能力。
2024-09-16 15:20:25
7777
128
原创 从模型到实践:新时代【数学建模竞赛论文】的结构、规范与创新解析
以上是对数学建模竞赛论文的详细讲解。通过这些内容,希望能够帮助你更好地理解数学建模竞赛论文的写作要求、格式规范、注意事项以及评判标准,从而在竞赛中取得优异的成绩。如果有任何进一步的问题或需要更深入的探讨,随时可以提出来,我会尽力帮助你。
2024-09-03 00:13:18
2844
148
原创 智能创作与优化新时代:【ChatGPT-4o】在【数学建模】、【AI绘画】、【海报设计】与【论文优化】中的创新应用
ChatGPT-4在数学建模、AI绘画、海报制作和论文优化等领域有广泛的应用。在数学建模中,它可以帮助分析问题、生成模型和提供解答思路;在AI绘画方面,它能根据描述生成高质量的图像;在海报制作中,它可以协助设计和优化视觉效果;在论文优化上,它能改进语言表达、结构逻辑和内容精度。这些功能使其成为多领域创作和优化的强大工具。
2024-08-31 15:14:07
6372
119
原创 智能新时代:探索【人工智能】、【机器学习】与【深度学习】的前沿技术与应用
这篇文章深入探讨了人工智能、机器学习、深度学习、算法和计算机视觉的核心概念,并通过丰富的代码示例展示了这些技术在实际应用中的具体实现。通过理论与实践的结合,读者不仅能够理解这些复杂的技术概念,还能掌握在不同场景下如何有效地应用这些技术,进而为进一步的学习和研究奠定坚实的基础。
2024-08-27 09:28:58
4563
134
原创 从【人工智能】到【计算机视觉】,【深度学习】引领的未来科技创新与变革
本文系统性地介绍了人工智能、机器学习、深度学习、算法和计算机视觉的基础知识、核心技术和实际应用。从基本概念到高级技术,本文旨在为读者提供一个全面的学习指南,帮助他们深入理解和掌握AI领域的关键内容。人工智能的未来发展将更加广泛和深入。随着技术的进步,AI将在更多的领域得到应用,带来新的机遇和挑战。未来的AI技术将更加智能化、个性化和普惠化,为人类社会的发展提供强大的动力。
2024-08-19 12:26:06
19128
143
原创 【人工智能】全景解析:【机器学习】【深度学习】从基础理论到应用前景的【深度探索】
总结:人工智能作为当今科技领域的前沿,正在迅速改变各行各业。尽管AI带来了前所未有的机遇,但也伴随着重大挑战。人类社会需要在推动AI技术发展的同时,谨慎应对其可能带来的风险和问题。展望:未来,随着技术的进一步成熟和完善,AI将以更智能、更安全的方式融入人类生活,推动社会进步和人类福祉。
2024-08-13 23:24:48
3065
119
原创 深入探索:【人工智能】、【机器学习】与【深度学习】的全景视觉之旅
人工智能、机器学习和深度学习是现代科技的重要组成部分,正深刻影响着各个行业的发展。从理论到实践,再到未来的发展趋势,AI技术的发展为我们提供了前所未有的工具来解决复杂的问题。然而,随着技术的进步,新的挑战也随之而来,如数据隐私、伦理问题等。为了实现AI技术的可持续发展,我们需要在技术创新与社会责任之间找到平衡。通过不断学习和实践,我们能够更好地应用AI技术,推动社会进步,并应对未来的挑战。
2024-08-10 15:33:48
9119
99
原创 未来已来:全方位掌握【人工智能】的系统学习路线
人工智能的系统学习路线,从数学基础、计算机基础,到核心技术和实践应用,再到前沿技术和具体领域的深度学习,涵盖了AI学习的各个方面。通过具体实例和详尽讲解,帮助学习者系统掌握AI知识,积累实践经验,并提供了高质量的学习资源和工具,旨在培养出在AI领域中具备领先优势的专业人才。
2024-08-07 10:22:19
3460
117
原创 【数学建模】——【A题 信用风险识别问题】全面解析
信用风险评价方法,包括数据预处理、特征选择、信用评分模型的构建及其比较、信用等级划分等多个方面,旨在提升信用风险评价的准确性和可靠性。
2024-08-02 18:10:59
8850
56
原创 引领未来的智能革命:深度解析【人工智能】前沿技术与应用
人工智能的基础理论与前沿技术,包括深度学习、人脸识别、语音识别、自动驾驶、生成对抗网络(GANs)、强化学习、无监督学习和人工大脑等领域。通过丰富的代码案例和应用实例,展示了AI技术在各行业中的广泛应用和未来发展潜力,旨在引领读者深入了解和掌握引领未来的智能革命。
2024-08-02 12:40:44
7421
120
原创 【数学建模】【优化算法】:【MATLAB】从【一维搜索】到】非线性方程】求解的综合解析
从一维搜索问题到非线性方程求解的各种优化算法,包括黄金分割法、线性规划、梯度下降法、拉格朗日乘数法、二次规划、混合整数线性规划、多目标规划、极大最小化、半无限优化、线性最小二乘法和牛顿法等。
2024-07-31 14:01:47
7837
109
原创 【优选算法】滑动窗口——leetcode——串联所有单词的⼦串(hard)
标准库容器如std::vector和std::unordered_map、字符串操作、迭代器、范围循环、动态内存管理以及面向对象编程(OOP)。通过这些示例,展示了如何使用C++的这些特性来高效、安全地处理数据和管理内存,编写可维护的代码。理解和掌握这些概念是编写优质C++程序的基础。
2024-07-30 23:26:21
836
14
原创 【优选算法】滑动窗口——leetcode——438.找到字符串中所有字母异位词
STL(Standard Template Library): 向量 vector 是 STL 的一部分,提供动态数组的功能。范围 for 循环: C++11 引入的循环方式,简化了遍历操作。字符数组与频率统计: 使用数组来记录字符出现的频率,并进行简单的数学运算实现高效统计。双指针(Sliding Window)技巧: 通过两个指针控制一个窗口,用于高效地处理子串问题。成员函数与类: 通过类和成员函数组织代码,方便管理和调用。
2024-07-29 23:46:41
1337
15
原创 【Python数值分析】革命:引领【数学建模】新时代的插值与拟合前沿技术
插值与拟合的基本原理、常用方法及其Python实现,涵盖了拉格朗日插值、牛顿插值、样条插值等插值方法,以及线性拟合、多项式拟合、指数拟合、对数拟合和幂函数拟合等拟合方法,并通过具体的代码实例展示了插值与拟合在数据平滑、图像处理、数值模拟、数据预测、数据建模、物理实验数据分析和工程设计中的实际应用。
2024-07-29 18:04:53
3765
100
原创 【数学建模】——matplotlib简单应用
Matplotlib 是一个强大的 Python 可视化库,广泛应用于绘制各种图形。其基本用法包括导入必要的模块,如 numpy 和 matplotlib.pyplot,并生成数据进行绘图。例如,可以通过线图、散点图、柱状图和雷达图来展示数据。创建三维图形需要使用 mpl_toolkits.mplot3d 库。使用 matplotlib 进行可视化可以通过简单的代码实现,包括设置标签、图例、颜色和线型等,以生成直观的图表来分析和展示数据。
2024-07-28 17:12:12
730
18
原创 打造一篇完美的【数学建模竞赛论文】:从准备到撰写的全面指南
数学建模竞赛是一项综合性很强的比赛,需要团队成员在短时间内进行高效的合作,解决实际问题并撰写出高质量的论文。本文详细讲解了撰写数学建模竞赛论文的各个环节和注意事项,希望能够帮助参赛队员提高论文质量,在竞赛中取得优异成绩。祝大家在数学建模竞赛中取得圆满成功!
2024-07-27 21:10:08
11826
108
原创 【数学建模】——【python】实现【最短路径】【最小生成树】【复杂网络分析】
这三个问题分别涉及图论中的最短路径问题、最小生成树问题以及结合这两种方法的复杂网络分析。第一个问题使用Dijkstra算法计算并可视化了从一个指定城市到其他所有城市的最短路径,第二个问题使用Kruskal算法找到并绘制了一个无向带权图的最小生成树,第三个问题在最小生成树的基础上,使用Dijkstra算法计算并展示了从核心城市到其他所有城市的最短路径。每个问题都结合了图的构建、算法的应用和结果的可视化。
2024-07-24 23:35:41
2181
19
原创 【数学建模】——前沿图与网络模型:新时代算法解析与应用
图与网络模型的基本概念、矩阵表示、最短路径、最小生成树、着色问题、旅行商问题、网络最大流问题及关键路径法等主题,结合PPT内容和Python代码实例,深入解析了每个主题的核心算法和应用场景,提供了可视化代码和图形展示,以便更好地理解和应用这些重要的图论算法。
2024-07-23 22:05:26
3086
111
原创 利用【MATLAB】和【Python】进行【图与网络模型】的高级应用与分析】
图与网络模型是解决复杂系统问题的重要工具,通过合理的算法和数学模型,可以有效地解决最短路径、最小生成树等问题。利用MATLAB和Python等工具,可以大大简化计算过程,提高工作效率。在实际应用中,图与网络模型广泛用于通信网络建设、物流运输规划等领域,具有重要的现实意义。希望这篇详细的博客总结能够帮助您理解和应用图与网络模型的基本概念、算法及其在实际问题中的应用。
2024-07-21 22:49:59
8915
136
原创 【数学建模】——多领域资源优化中的创新应用-六大经典问题解答
通过建立数学模型并求解,解决了不同情境下的资源配置和优化问题。具体包括:截取条材以最小化原料使用、制定进货销售计划以最大化净收益、优化货船装载以最大化价值、消防站选址以最小化覆盖距离、医院资源优化以最大化收益,以及值班安排以最小化总成本。这些问题展示了线性规划和整数规划在实际应用中的广泛用途,尤其在资源分配和决策优化中发挥了重要作用。
2024-07-17 22:07:09
5219
107
原创 【数学建模】技术革新——Lingo的使用超详解
Lingo是一款功能强大的数学建模和优化求解工具,广泛用于线性规划、整数规划和非线性规划等领域。其基本语法包括变量声明、常量声明、目标函数定义和约束条件设置。通过@VARIABLES和@CONSTANTS关键字声明变量和常量,使用MAX或MIN定义目标函数,并通过线性或非线性表达式设置约束条件。Lingo支持二进制变量和整数变量声明,通过@BIN和@GIN关键字实现。注释可以用!添加,以提高代码可读性。掌握这些基础知识,可以帮助用户构建并求解复杂的优化模型。
2024-07-16 22:47:24
7190
87
原创 新时代多目标优化【数学建模】领域的极致探索——数学规划模型
数学规划模型是数学建模中用于描述和解决优化问题的一类模型。它通过构建目标函数和约束条件,将实际问题转化为数学形式,旨在寻找满足约束条件的最优解。数学规划模型广泛应用于各个领域,包括资源分配、生产计划、物流管理和金融投资等,通过线性规划、非线性规划、整数规划等方法,帮助决策者在复杂环境中做出最优选择。
2024-07-15 22:05:58
4841
126
原创 【数学建模】——【线性规划】及其在资源优化中的应用
线性规划(Linear Programming, LP)是运筹学的一个重要分支,主要研究在给定约束条件 下找到目标函数的最大值或最小值。它广泛应用于生产管理和经济活动中,帮助合理利用有限资源以获得最佳经济效益。主要应用包括资源优化利用和任务最大化问题。 线性规划的数学模型包括三个要素:线性约束条件、变量取值限制和目标函数。可行条件包括前两项,优化条件是目标函数。建立模型、求解模型、结果分析是线性规划的一般步骤。通过线性规划方法,可以实现科学的资源分配和优化。
2024-07-14 23:58:50
1770
26
原创 【数学建模与优化】:解析与实践
数学建模是将复杂的现实问题转化为简化的数学问题,通过数学模型进行分析和解决的过程。数学模型的分类和应用领域广泛,通过合理利用资源,优化模型可以在工程、经济、管理等各个领域中发挥重要作用。通过实际问题中的应用实例,可以更好地理解和掌握优化模型的建立与分析方法。
2024-07-14 23:27:01
1136
4
原创 【数学建模】——力学模型建立的基本理论及方法
数学建模中力学模型建立的基本理论和方法,包括牛顿力学、能量守恒定律、动量守恒定律以及刚体力学,介绍了自由体图、平衡方程、运动方程、能量法和动量法等基本方法,并通过具体图例分析了简单摆模型的摆动运动,展示了从问题描述到结果验证的力学模型建立步骤。
2024-07-13 23:26:17
2782
23
原创 【数学建模】——数学规划模型
数学规划模型是解决优化问题的强大工具,通过建立数学模型,可以清晰地描述问题、分析问题并找到最优解。不同类型的数学规划模型适用于不同的问题类型,掌握这些基本概念和求解方法,可以有效地应用数学规划模型解决实际问题。
2024-07-13 15:45:35
2064
7
原创 引领未来:在【PyCharm】中利用【机器学习】与【支持向量机】实现高效【图像识别】
支持向量机(SVM)进行图像识别的完整过程,包括从获取并可视化MNIST数据集、进行数据标准化、划分训练和测试集、通过网格搜索优化SVM模型、评估模型性能到预测新图像的各个步骤,并在代码中添加了调试输出和计时器以便更好地跟踪和优化整个过程。
2024-07-12 15:56:49
5164
81
原创 深入探讨【C++容器适配器】:现代编程中的【Stack与Queue】的实现
C++中的stack和queue通过容器适配器实现,分别用于LIFO和FIFO操作。stack和queue的底层容器默认使用deque,但也可以根据需求选择其他标准容器。理解并灵活运用这些数据结构,对于高效编写算法和处理复杂数据具有重要意义。
2024-07-12 14:28:16
1274
56
原创 探索【Python面向对象】编程:新时代的高级编程范式详解
Python的面向对象编程的各个方面,包括面向对象编程的基本概念、抽象、类和实例、封装、继承、多态、自省以及静态方法和类方法。
2024-07-11 23:57:33
1532
23
原创 利用【Python】【线性规划】优化工厂生产:实现智能资源配置与利润最大化的现代解决方案
建立线性规划模型,以解决生产优化问题。通过定义决策变量、目标函数和约束条件,使用Python的SciPy库中的linprog函数求解模型,并验证结果的合理性。最终,确定了在资源限制条件下最大化利润的最优生产方案.
2024-07-11 00:18:36
6814
85
原创 【模块化与包管理】:解锁【Python】编程的高效之道
Python中的模块和包是管理和组织代码的重要工具。模块是包含一组相关功能的Python代码文件,具有代码复用、结构清晰和命名空间隔离的优点。模块的导入通过import语句进行,Python解释器会按照特定的搜索路径查找模块文件。通过模块的命名空间可以避免命名冲突。import语句有多种形式,包括单个模块导入、多个模块导入、使用别名导入和部分导入。
2024-07-10 11:23:57
1713
39
原创 深入解析【C++ list 容器】:高效数据管理的秘密武器
C++ 中的 list 容器是一个基于双向链表的序列式容器,适用于需要频繁插入和删除操作的场景,但不支持随机访问。list 提供了多种构造方法和丰富的操作接口,包括插入、删除、访问等。与 vector 相比,list 在插入和删除操作上更高效,但在随机访问和空间利用率上较差。
2024-07-09 17:55:39
1245
18
原创 【C++ 】-vector:新时代动态数组的革新与未来
C++中的vector是一个动态数组,可以根据需要自动调整大小。它使用连续的内存空间,像普通数组一样可以通过下标快速访问元素,但与普通数组不同的是,vector可以动态增加或减少元素。创建vector有多种方式,包括默认构造、指定大小和默认值、拷贝构造等。常用的操作有插入、删除、访问和遍历元素,vector还提供了容量管理的方法,如reserve和resize,以优化性能。
2024-07-09 12:00:00
881
11
原创 新时代【机器学习】与【Pycharm】:【随机数据生成】与智能【股票市场分析】
新时代【机器学习】与【Pycharm】:【随机数据生成】与智能【股票市场分析】生成随机股票数据,保存为 CSV 文件,并使用决策树进行预测和评估。
2024-07-08 14:39:27
4877
98
原创 掌握【Python异常处理】:打造健壮代码的现代编程指南
通过逐步了解和实现Python中的异常处理机制,可以确保程序的健壮性和可维护性。使用try、except、else和finally块,可以编写出清晰且可维护的代码,有效管理错误。
2024-07-08 13:38:40
1305
36
原创 【Python文件】操作终极指南:高效管理和处理文件系统的必备技能
在现代编程环境中,掌握文件操作技能对于开发者来说至关重要。Python作为一种高效、简洁的编程语言,提供了强大的文件操作功能。文件的基本操作、读写文件、文件指针的操作以及文件系统的操作。
2024-07-06 15:44:57
1325
24
原创 揭秘数据之美:【Seaborn】在现代【数学建模】中的革命性应用
Seaborn提供了高级接口,使得绘制复杂的统计图表变得简单且直观。与Matplotlib相比,Seaborn的默认设置和样式更加美观,用户无需进行繁琐的配置即可生成专业的图表。2. 支持多种图表类型Seaborn支持多种图表类型,包括但不限于:散点图(Scatter Plot),箱线图(Box Plot),小提琴图(Violin Plot),条形图(Bar Plot),回归图(Regression Plot),热力图(Heatmap)
2024-07-05 14:09:09
3537
81
原创 【解码现代 C++】:实现自己的智能 【String 类】
实现一个自定义的String类,最重要的是理解和正确实现构造函数、拷贝构造函数、赋值运算符重载和析构函数。通过深拷贝和写时拷贝等技术,可以确保对象管理资源的正确性和高效性。
2024-07-05 12:58:57
1319
39
原创 【掌握C++ string 类】——【高效字符串操作】的【现代编程艺术】
string 类表示字符序列,提供类似于标准容器的接口。string 实际上是 basic_string 的实例,封装了字符串操作,提供方便的函数和自动内存管理。
2024-07-04 17:50:18
984
13
数学建模python相关应用:matplotlib,pandas,statistics.pptx
2024-07-29
问题1 只考虑使用A类无人机,请给出公交与无人机协同配送方案,使总费用最小;要求给出具体的飞行路径及时刻表无人机.xlsx
2024-05-16
74 Matlab二维绘图.pdf
2024-05-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人