四平方和(回溯)

四平方和

四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。

比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)

对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法


程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开

例如,输入:
5
则程序应该输出:
0 0 1 2

再例如,输入:
12
则程序应该输出:
0 2 2 2

再例如,输入:
773535
则程序应该输出:
1 1 267 838

资源约定:
峰值内存消耗 < 256M
CPU消耗  < 3000ms

#include <iostream>
#include <cmath>
using namespace std;

int a[4];
int cnt = 0;
int found = 0;
void traceback(int n, int id);
int check(int n);
void print();
int main(){
	for(int i = 0;i<4;i++){
		a[i] = -1;
	}
	int n;
	cin >> n;
	
	traceback(n,0);
	//cout << cnt;
}
void traceback(int n, int id)
{
	if(found){
		return;
	}
	if(id == 4){
		if(check(n) == 0){
			if(found == 0){
				print();
				found++;
			}
			cnt++;
		}
		return;
	}
	
	for(int i = 0;i<=sqrt(n);i++){
		if(id > 0 && i < a[id-1]){
			continue;
		}
		a[id] = i;
		if(check(n) == 1){
			a[id] = -1;
			continue;
		}
		//print();
		traceback(n, id+1);
		a[id] = -1;
	}
}
int check(int n)
{
	int sum = 0;
	for(int i = 0;i<4;i++){
		if(a[i] == -1){
			break;;
		}
		sum += a[i] * a[i];
	}
	if(sum > n){
		return 1;
	}
	else if(sum < n){
		return -1;
	}
	
	return 0;
}
void print()
{
	for(int i = 0;i<4;i++){
		cout << a[i] << " ";
	}
	cout << endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值