四平方和
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
#include <iostream>
#include <cmath>
using namespace std;
int a[4];
int cnt = 0;
int found = 0;
void traceback(int n, int id);
int check(int n);
void print();
int main(){
for(int i = 0;i<4;i++){
a[i] = -1;
}
int n;
cin >> n;
traceback(n,0);
//cout << cnt;
}
void traceback(int n, int id)
{
if(found){
return;
}
if(id == 4){
if(check(n) == 0){
if(found == 0){
print();
found++;
}
cnt++;
}
return;
}
for(int i = 0;i<=sqrt(n);i++){
if(id > 0 && i < a[id-1]){
continue;
}
a[id] = i;
if(check(n) == 1){
a[id] = -1;
continue;
}
//print();
traceback(n, id+1);
a[id] = -1;
}
}
int check(int n)
{
int sum = 0;
for(int i = 0;i<4;i++){
if(a[i] == -1){
break;;
}
sum += a[i] * a[i];
}
if(sum > n){
return 1;
}
else if(sum < n){
return -1;
}
return 0;
}
void print()
{
for(int i = 0;i<4;i++){
cout << a[i] << " ";
}
cout << endl;
}