NOI / 1.5编程基础之循环控制 43:质因数分解 TLE的优化

文章讲述了如何在编程中找到给定正整数n(6到2*10^9范围内)表示为两个不同质数乘积时的较大质数。提供了两种代码实现,一种容易超时,另一种使用更高效的方法,即仅检查到n的平方根。
摘要由CSDN通过智能技术生成

描述

已知正整数 n 是两个不同的质数的乘积,试求出较大的那个质数。

输入

输入只有一行,包含一个正整数 n。

对于60%的数据,6 ≤ n ≤ 1000。
对于100%的数据,6 ≤ n ≤ 2*10^9。

输出

输出只有一行,包含一个正整数 p,即较大的那个质数。

样例输入

21

样例输出

7

先看超时的:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;


int main()
{
    int n;
    cin>>n;
    for(int i=n-1; i>=2; i--)
    {
        if(n%i==0){
            cout<<i;
            return 0;
        }
    }
    return 0;
}

再看对的:

#include <stdio.h>
#include <math.h> 
int main()
{
    int a,i;
    scanf("%d",&a); 
    for(i=2;i<=sqrt(a);i++)
    {
        if(a%i==0) printf("%d\n",a/i);
    }                          
    return 0;
}

我相信你明白了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值