我在代码随想录|写代码Day27 | 贪心算法 | 理论基础, 455.分发饼干, 376. 摆动序列,53. 最大子序和

本文介绍了贪心算法的基本概念、使用场景以及常见问题解决策略,如分发饼干、摆动序列和最大子序和。通过实例讲解了如何识别何时使用贪心策略,以及贪心算法的一般解题步骤。
摘要由CSDN通过智能技术生成

学习目标:

博主介绍: 27dCnc
专题 : 数据结构帮助小白快速入门
👍👍👍👍👍👍👍👍👍👍👍👍
☆*: .。. o(≧▽≦)o .。.:*☆


学习时间:

  • 周一至周五晚上 7 点—晚上9点
  • 周六上午 9 点-上午 11 点
  • 周日下午 3 点-下午 6 点

主题: 贪心算法

今日份打卡

在这里插入图片描述

  • 代码随想录-贪心算法

学习内容:

  1. 贪心算法理论基础
  2. 分发饼干
  3. 摆动序列
  4. 最大子序和

内容详细

贪心算法理论基础

1.1 贪心

贪心的本质是选择每一阶段的局部最优,从而达到全局最优。

举一个例子:
例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?
指定每次拿最大的,最终结果就是拿走最大数额的钱。
每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

1.2 贪心的套路(什么时候用贪心)

说实话贪心算法并没有固定的套路。
所以唯一的难点就是如何通过局部最优,推出整体最优。

那么如何能看出局部最优是否能推出整体最优呢?有没有什么固定策略或者套路呢?

不好意思,也没有! 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。

最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧。

1.3 贪心一般解题步骤

贪心算法一般分为如下四步:

  1. 将问题分解为若干个子问题
  2. 找出适合的贪心策略
  3. 求解每一个子问题的最优解
  4. 将局部最优解堆叠成全局最优解

贪心没有模版但是有题型

(基础题型) 分发饼干

题目考点: 贪心 思维

在这里插入图片描述

思路

  • 常规思路: 用小饼干满足小胃口
  • 问题: 怎么去用小饼干满足小胃口
  • 问题思路: 小饼干满足不了当前胃口,将饼干遍历到下一个
  • 注意事项: 胃口和饼干要有序

在这里插入图片描述

满足情况如图

在这里插入图片描述

这个例子可以看出饼干 9 只有喂给胃口为 7 的小孩,这样才是整体最优解,并想不出反例,那么就可以撸代码了。

小饼干先喂饱小胃口

// 版本一
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0; i < s.size(); i++) { // 饼干
            if(index < g.size() && g[index] <= s[i]){ // 胃口
                index++;
            }
        }
        return index;
    }
};

其他思路

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
                result++;
                index--;
            }
        }
        return result;
    }
};

摆动序列

题目考点: 数列 贪心 数组

在这里插入图片描述

思路

  • 确定f(x) 的极值点,然后通过极值点

删除元素的方式

在这里插入图片描述

这是我们思考本题的一个大题思路,但本题要考虑三种情况:

  • 情况一:上下坡中有平坡
  • 情况二:数组首尾两端
  • 情况三:单调坡中有平坡

情况一:上下坡中有平坡

在这里插入图片描述

操作方法
如图,可以统一规则,删除左边的三个 2:

在这里插入图片描述

情况二:数组首尾两端

在这里插入图片描述

情况三:单调坡度有平坡

如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:
在这里插入图片描述

图中,我们可以看出,在三个地方记录峰值,但其实结果因为是 2,因为 单调中的平坡 不能算峰值(即摆动)。

我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。

最终代码

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
            }
        }
        return result;
    }
};

本题异常情况的本质,就是要考虑平坡, 平坡分两种,一个是 上下中间有平坡,一个是单调有平坡,如图:

111

最大子序和

题目考点: 贪心 数组

暴力解法的思路,第一层 for 就是设置起始位置,第二层 for 循环遍历数组寻找最大值

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) { // 设置起始位置
            count = 0;
            for (int j = i; j < nums.size(); j++) { // 每次从起始位置i开始遍历寻找最大值
                count += nums[j];
                result = count > result ? count : result;
            }
        }
        return result;
    }
};

贪心图解

q

贪心代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};

动规法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size(), 0); // dp[i]表示包括i之前的最大连续子序列和
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};

学习产出:

  • 技术笔记 2 遍
  • CSDN 技术博客 3 篇
  • 习的 vlog 视频 1 个

在这里插入图片描述

🔥如果此文对你有帮助的话,欢迎💗关注、👍点赞、⭐收藏、✍️评论,支持一下博主~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值