- 博客(10)
- 收藏
- 关注
原创 解决win11下的CondaError: Run ‘conda init‘ before ‘conda activate‘
解决win11下的CondaError: Run 'conda init' before 'conda activate'问题
2025-08-06 23:03:28
2544
4
原创 【SSH连接与权限问题】ssh: connect to host github.com port 22: Connection refused Bad permissions. Try removin
解决关于SSH连接GitHub失败及SSH文件安全权限配置的问题。
2025-02-03 21:09:10
3282
原创 (万字长文,含部分调参)PyTorch学习从基础到实践 (一)
在深度学习的浪潮中,PyTorch凭借其灵活的动态计算图、简洁直观的 API 设计和强大的社区支持,迅速崛起为全球研究人员和开发者的首选深度学习框架之一。从自然语言处理到计算机视觉,从学术研究到工业应用,PyTorch 的身影无处不在。因此,学习和掌握 PyTorch 已成为通往深度学习领域的一把“钥匙”。本教程将带领你系统而深入地掌握 PyTorch,并逐步构建自己的深度学习模型。
2024-11-11 18:10:07
2041
1
原创 神经网络学习记录(三):阶层型神经网络结构及各部分层作用
在现代深度学习中,阶层型神经网络通过层次化结构,从简单到复杂地提取特征,成为构建智能系统的核心技术。本文概述了其基本结构和各层的作用,并探讨了通过调整神经元数量、正则化、激活函数等参数来优化模型性能及可视化调整的效果,同时,分析了激活函数对梯度流动的影响及优化策略。
2024-10-28 20:26:29
2476
原创 神经网络学习记录(二):梯度下降与反向传播
本文介绍了神经网络训练中的正向传播与反向传播机制。正向传播将输入数据逐层传递到输出层,生成预测结果;反向传播则利用链式法则,将损失的梯度逐层回传,确定各层参数的更新方向,并通过梯度下降法优化权重和偏置。二者协同工作,使得神经网络在不断调整参数的过程中,逐步减少损失,提高模型的预测准确性和泛化能力。通过符号单元的复用与高效的梯度计算,整个训练过程变得简洁易行,确保模型能够逐步逼近最佳状态。
2024-10-28 00:45:41
1331
原创 神经网络学习记录(一):前向传播过程与损失计算
本文记录了我在学习 BP 神经网络过程中的部分理解,从前向传播的基本概念到关键流程和损失计算的完整流程。文章首先介绍了前向传播如何将输入转化为预测值,并通过损失函数量化模型的误差;接着,分析了Softmax 和 Hinge Loss等损失函数的适用场景,解释了正则项在防止过拟合中的重要作用。后续,将通过反向传播和梯度下降优化模型的权重,使其在训练过程中逐步提升分类准确性和泛化能力。希望这些总结对理解 BP 神经网络有所帮助,欢迎交流指正。
2024-10-27 10:57:32
1451
原创 (Pytorch)在Jupyter Notebook中最后绘制损失折线图时出现:服务似乎挂掉了,但是会立刻重启的。对于这一问题的解决方法
对于在(Pytorch)在Jupyter Notebook中最后绘制损失折线图时出现:服务似乎挂掉了,但是会立刻重启——的解决方法及我的排查过程。
2024-10-26 21:21:15
654
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅