一、安装Anaconda
作者此处选择的Anaconda3-2020.11-Windows-x86_64版本进行安装,最好是用管理员身份运行(避免权限问题)。前面选择默认就行,但有几点需要注意:
1.选择所有用户都能使用
2.此处选择你想要的安装路径,最好不要有中文。
注意:如果电脑的命名是中文有时对jupyter之后的使用也会有影响!建议使用英文用户名或修改系统账户名。
3.此处两个都需要勾选,上方是添加环境变量,不勾选的话,需要手动添加,这里为了方便最后打勾。下方是将Anaconda安装的Python注册为主Python。
二、解决浏览器无法弹出
问题现象:
-
启动 Jupyter 后,终端显示运行但浏览器未自动打开。
-
需手动复制
http://localhost:8888
到浏览器访问
注意:如果没遇到此问题,此处可以跳过。
1.在开始菜单中,选择jupyter notebook打开。
2.如果没有弹出如下图的浏览器页面, 不同版本的页面有所不同。
3.没有弹出浏览器,而是下图,就需要进行修复。
4. 复制下方的三行代码到命令提示符中粘贴会弹出一个记事本。
# 解决 juypter 不能自动打开浏览器问题
jupyter notebook --generate-config
notepad .jupyter\jupyter_notebook_config.py
把下面这四行写入文件开头部分 ,保存后,关闭记事本和命令提示符即修复完成。
# 把下面这四行写入文件开头部分
import webbrowser
webbrowser.register("Microsoft Edge",None,webbrowser.GenericBrowser("C:\\Program Files (x86)\\Microsoft\\Edge\\Application\\msedge.exe"))
c.NotebookApp.browser = 'Microsoft Edge'
三、 解决jupyter一开始连接不上内核
问题现象:
-
启动 Notebook 后长时间显示
Connecting to kernel
-
最终报错
Kernel died
或No connection to kernel
注意:如果没遇到此问题,此处可以跳过。
在开始菜单选择以管理员身份运行命令提示符,将下面三行代码复制进去即可。
# 解决jupyter 连接不上内核
pip uninstall -y pyzmq
pip install pyzmq==19.0.2
有时会出现报错,但是出现成功安装即可说明没有问题。
四、创建环境
安装好Anaconda后,一般需要根据需求创建不同的Python环境。
1.打开Anaconda Promp
首先打开Anaconda Prompt。此时进来是处于我们的base环境,也就是我们的基础环境。
2.创建新环境
在base环境下创建我们的新环境,可以根据读者的需求进行选择,此处作者选择了python3.9.12。因为python3.9.12是作者目前使用最稳定的环境。
注意:创建环境时需要关掉VPN。
(1)查看已有环境
首先查看所有已安装的环境,一般没有创建过的只会有base环
#查看环境列表
conda env list
输出示例:
(2)创建相应需求的环境
此处作者选择了python3.9.12的环境,名字可以自定义。
#创建名为py3.9的环境
conda create -n py3.9 python=3.9.12
(3)激活与退出新环境
#激活py3.9的新环境
conda activate py3.9
#退出py3.9的环境
conda deactivate py3.9
(4)查看jupyter内核
因为jupyter是安装在base的环境下的,此时进入jupyter是无法查看到py3.9的环境的。
点击jupyter进入jupyter notebook的浏览器画面,正常来说的话,我们只会看到Python3,而不会看到我们的py3.9。
五、Jupyter 多环境内核配置(推荐方案)
(1)传统方法(可能存在问题,不推荐)
首先在新建的环境下,安装内核。再将当前 Python 环境注册为 Jupyter Notebook 的一个内核,并命名为 "py3.9"(可以自定义)。
#进入py3.9环境,安装内核包,再将当前 Python 环境注册为Jupyter的一个内核,并命名为 "py3.9"
conda activate py3.9
conda install ipykernel
python -m ipykernel install --user --name py3.9 --display-name py3.9
之后可以利用下面的代码查看jupyter内核,可以看到多出来的jupyter内核。
#查看内核列表
jupyter kernelspec list
也可以在jupyter中查看,记得刷新一下页面。
存在问题:存在多个不同版本的python同时存在时会出现jupyter连接不上内核和内核长期无响应的问题。
(2)最佳方法(使用 nb_conda_kernels)——已实践
给环境安装内核,同时将环境添加到jupyter中来。此处作者使用nb_conda_kernels 添加所有环境。这也是防止后期多个python环境同时存在时内核无法连接的最好解决方法。
首页在新环境中安装内核,再退出新环境来到base环境,安装nb_conda_kernels 添加所有环境。
!!!这是目前作者发现解决多内核(多python环境)情况下,最好解决jupyter连接不上内核的方法。
注意:只运行conda install nb_conda_kernels,启动jupyter notebook不会显示已创建的所有环境,还要在每个环境中分别安装ipykernel。
#在py3.9的新环境中安装内核,并退出环境
conda activate py3.9
conda install ipykernel
conda deactivate
# 在 base 环境安装 nb_conda_kernels,添加所有环境到jupyter中,并打开jupyter
conda activate base
conda install nb_conda_kernels
jupyter notebook
此时进入jupyter浏览器会发现多出了一个 Python[conda env py3.9],这是py3.9所对应的内核在jupyter中的显示。
可以点击创建新的jupyter文件进行代码的尝试,检验jupyter是否可用。可以在新创建的文件中尝试1+1的简单计算进行检验。
六、内核与环境清理
1.删除Jupyter内核
首先查看内核列表,选择你要删除的内核。
#首先查看内核列表
jupyter kernelspec list
#删除名为py3.9的jupyter内核
jupyter kernelspec uninstall py3.9
示例:
2.删除环境
#移除py3.9环境
conda remove -n py3.9 --all
第一次写技术博客,难免有不足之处,欢迎大家在评论区指正或提问!