自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 Pandas 多层索引操作

使用np.r_[(a, b), (c, d)]将两个二维数组a和b按行连接,并将结果与二维数组c和d按行连接,最终得到一个拼接后的二维数组。np.r_[]函数是用于连接数组的函数,类似于concatenate函数,但可以在一维数组和多维数组之间进行拼接。np.r_还支持切片操作,如np.r_[:5, 7:10]表示将索引为0到4的元素和索引为7到9的元素按行连接。对两个序列生成笛卡尔积,即两两组合,结果如上。总而言之,np.r_[]函数可以在行方向上将多个数组或切片进行连接,生成一个新的数组。

2024-08-08 16:06:13 455

原创 数据读取及分隔方法

在上述示例中,.splitlines() 方法将文本字符串按行拆分,每行作为列表的一个元素,并将结果存储在名为 lines 的列表中。字符串的split()方法:这是最常用的数据分隔方法,可以根据指定的分隔符将一个字符串拆分成子串,并返回一个存储子串的列表。re模块的split()方法:re模块(正则表达式模块)提供了一个split()方法,可以使用正则表达式来进行更灵活的分隔。读取文本文件:可以使用内置的open()函数来打开文本文件,并使用read()或readlines()方法读取文件内容。

2024-05-23 13:37:14 497

原创 Plotly库利用滑块创建数据可视化

使用了Plotly库来创建一个数据可视化图表,并使用滑块来控制显示哪些数据。

2024-05-22 18:02:26 588

原创 字节、进制、字符串格式化及拼接

每个字节是一个表示8位二进制数的整数,范围从0到255。在这个例子中,int(hex_string, 16)将hex_string转换为整数65,因为41在十六进制中表示的数值是65,而65是ASCII码表中的字符’A’。在这个例子中,int(binary_string, 2)将binary_string转换为整数13,因为0b1101在二进制中表示的数值是13。因此,{:03.2f} 表示将一个浮点数格式化为字符串,至少占用 3 个字符的位置,保留小数点后 2 位,并在前面填充零(如果需要的话)。

2024-05-09 17:24:38 631

原创 itertools.groupby分组

是一个 Python 的内置函数,用于对可迭代对象中的连续项进行分组。它会将相邻的重复元素放在一起,并返回一个迭代器,每次迭代都生成一个包含键和对应组的元组。**key(可选):**一个函数,用于计算每个元素的键值。如果未指定或为 None,则默认为恒等函数,返回未更改的元素。**iterable:**需要进行分组的可迭代对象。

2024-03-04 13:45:50 851 1

原创 python 一些基础用法

Python 通常是一行写完一条语句,但如果语句很长,可以使用反斜杠“ \” 来实现多行语句;在 [], {}, 或 () 中的多行语句,不需要使用反斜杠 \。反斜杠可以用来转义,使用 r 可以让反斜杠不发生转义。如 r"this is a line with \n” 则 \n 会显示,并不是换行。\n\n 在结果输出前会输出两个新的空行。一旦用户按下 enter 键时,程序将退出。数值的除法包含两个运算符:/ 返回一个浮点数,// 返回一个整数。使用三引号(‘’’ 或 “”“)可以指定一个多行字符串。

2024-02-18 16:32:14 385

原创 Jupyter Notebook输出Html,隐藏代码

将jupyter-notebook导出为一个报告或者presentation的形式,不需要显示代码过程,只需要显示结果以及用markdown做的解释说明.

2024-01-25 13:51:33 1824

原创 jupyter notebook闪退,ImportError: cannot import name ‘soft_unicode‘ from ‘markupsafe‘

jupyter notebook闪退问题、路径修改方法、插件安装

2024-01-24 15:11:00 2337 1

原创 集合set()、unique()、nunique()

difference()方法返回一个包含两个集合之间的差异的集合。就是返回的集合包含仅存在于第一个集合中而不存在于两个集合中的元素,即差集。统计list中的不同值时,返回的是array.它有三个参数,可分别统计不同的量,返回的都是array.dataframe.groupby().agg():分组聚合函数(第一个括号分组,第二个括号聚合)set.discard( x ) 移除集合中的元素,且如果元素不存在,不会发生错误。union() 方法返回包含了所有集合的元素,重复的元素只会出现一次,即并集。

2024-01-04 14:00:55 997 1

原创 ananconda安装+jupyter+路径配置

ananconda安装+jupyter+路径配置

2024-01-03 14:53:40 1467 1

原创 python 日期,时间,对比方法

时间戳 <—mktime---------- 结构化时间 <—strptime— 格式化的字符串时间。时间戳 —localtime/gmtime—> 结构化时间 —strftime—> 格式化的字符串时间。

2024-01-03 10:12:23 826 1

原创 几个常见的正则表达式模式

查找 前缀 名称是一个字符串,可以包含字母(大写或小写),数字,下划线 ‘_’ ,点 ‘.’ 和/或破折号 ‘-’。例如,a+b会匹配"ab”、“aab”、“aaab"等。例如,[^abc]会匹配除了"a”、“b”、“c"之外的任意字符。例如,^hello会匹配以"hello"开头的字符串。例如,a*b会匹配"b”、“ab”、“aab"等。例如,[abc]会匹配"a"、“b”、“c"中的任意一个字符。例如,\btest\b会匹配单独的单词"test”。例如,a.b会匹配"a+b"、“a@b"等。

2023-12-11 17:54:57 414 1

原创 快捷键总结

Shift-Enter : 运行本单元,选中下一单元。Alt-Enter : 运行本单元,在下面插入一单元。Ctrl-Shift-Subtract : 分割单元。Ctrl-Right : 跳到右边一个字首。Ctrl-Left : 跳到左边一个字首。Ctrl-Shift-- : 分割单元。Ctrl-Home : 跳到单元开头。Ctrl-Down : 跳到单元末尾。Ctrl-Enter : 运行本单元。Ctrl-Shift-Z : 再做。Ctrl-End : 跳到单元末尾。Ctrl-Up : 跳到单元开头。

2023-11-27 17:22:07 1064

原创 使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:撤销:Ctrl/Command + Z重做:Ctrl/Command + Y加粗:Ctrl/Command + B斜体:Ctrl/Command + I标题:Ctrl/Command + S

2023-11-27 14:01:33 872

原创 python os模块 、glob模块 、shutil模块

cwd 是 current working Directory 的缩写,当前工作目录mkdir是 make directory 的缩写,创建目录mkdir 函数的参数为路径,可以是相对路径,也可以是绝对路径。这里是相对路径mkdir 只能新建不存在的目录makedirs 的作用可以理解为依次创建文件夹。rmdir 的作用只能删除空目录。空目录即空文件夹。src – 要修改的文件或目录名dst – 修改后的文件或目录名。

2023-11-16 15:50:54 140 1

原创 split、rsplit的用法

rsplit(分隔符,分割几次)从右向左寻找。split(分隔符,分割几次)从左向右寻找。

2023-11-15 13:34:51 100

原创 获得文件夹下所有的文件 os.listdir(dir_path)

获取一个文件夹下所有的以 .txt 结尾的文件,你可以使用 Python 的 os 和 os.walk 模块。输入为**'.txt’文件** 或。

2023-11-10 11:17:47 326 1

原创 数据类型、内存

数据类型object与category比较:

2023-10-27 14:26:25 48 1

原创 groupby(‘**‘).apply(lambda x:x.sample(5)).reset_index(drop=True)

lambda函数控制字符 “\033”![41 表示背景颜色:红色,36表示字体颜色:黄色;最后的 \0330m表示关闭所有属性,如果不加,会把这个效果延续要整个以后的待print信息中。

2023-10-24 16:21:03 88

原创 plotly读取excel表,生成本地html文件

2.读取excel的多个表格(无公式计算列)

2023-07-20 15:38:51 355 1

原创 python中DataFrame删除全为空的行,并对特定的行填充

要删除DataFrame中一行数值全为空的行,并对第二列进行填充,可以使用。

2023-07-19 13:43:09 1324

原创 十六进制字节串转换为float型十进制数

我们使用binascii.unhexlify()方法将hex_str转换为字节串形式。然后,我们使用struct.unpack()方法将字节串解包为单个float型十进制数值。f’,它表示我们希望解包为一个大端(!具体来说,需要使用struct.unpack()方法将十六进制字节串解包为float型数值.在这个示例代码中,我们定义了一个十六进制字节串hex_str,其值为b’40e5c28f’。最后,我们使用print(dec_num)打印结果,显示将十六进制字节串转换为float型十进制数得到的结果。

2023-05-06 10:14:37 2268

原创 将十六进制字节串转换为有符号的十进制整数的Python代码

这个函数接受一个十六进制字节串,然后将其转换为有符号的十进制整数并返回。它通过检查转换后的值是否超过了2。32减去该值来获得其补码表示的大小。

2023-04-27 09:32:30 1504

原创 matlab 时域、频域和谱域中信号图

matlab 时域、频域和谱域中信号图

2022-08-16 15:17:31 5944 1

原创 python升序、降序、反转 ----sort(),sorted(),reverse(),reversed()

python升序、降序、反转 ----sort(),sorted(),reverse(),reversed()

2022-07-20 12:26:22 10228 1

原创 python解决每隔几行取数据的问题并使用drop函数删除dataframe中指定索引列表对应位置的数据行

python解决每隔几行取数据的问题import pandas as pddata = pd.read_csv('./raw.csv')df = pd.DataFrame(data)a=[]for i in range(0,len(df),6): ##每隔6行取数据 a.append(i)file = df.iloc[a]raw1 = pd.DataFrame(file)raw1.to_csv('./raw.csv', index = None)使用drop函数删除datafr

2022-05-24 11:30:10 2240 1

原创 多分类交叉验证模型评估指标(精度,召回率和f1分数)及混淆矩阵

1.多分类交叉验证精度,召回率和f1分数及混淆矩阵代码:import sklearnfrom sklearn.datasets import load_irisfrom sklearn.neighbors import KNeighborsClassifier# from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_scorefrom sklearn.model_sele

2022-04-21 15:35:13 4141

原创 StandardScaler类中transform和fit_transform

StandardScaler类中transform和fit_transform方法里fit_transform(X_train) :找出X_train的均值和​​​​​​​标准差,并应用在X_train上。对于X_test,直接使用transform方法。(此时StandardScaler已经保存了X_train的均值和标准差)1.二者的功能都是对数据进行某种统一处理(比如标准化~N(0,1),将数据缩放(映射)到某个固定区间,归一化,正则化等)2.transform(restData),从而保证

2022-04-21 11:29:00 3157

原创 ‘NoneType‘ object has no attribute ‘group‘问题

问题:pic_path.sort(key = lambda i: int(re.match(r'(\d+)', i).group())) #文件排序运行文件排序代码时出现bug 'NoneType' object has no attribute 'group'原因:在运行文件排序代码时,昨天还能运行的程序,第二天同样的环境下出现了bug经过查看,是因为当用jupyter查看文件时,会在原文件里生成.ipynb_checkpoints的文件夹,导致给文件夹中文件排序时序号混乱问题解决方法

2022-01-05 15:32:08 797 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除