Transformer模型的学习
在开始深入 Transformer 之前,建议先打好深度学习和自然语言处理(NLP)的基础,然后按照以下学习路径逐步掌握其核心原理、实现细节与实际应用。整个过程可分为:基础知识准备、自注意力与多头注意力理解、Encoder–Decoder 架构与位置编码学习、从零实现 Transformer、使用主流框架(TensorFlow、PyTorch)进行实践、以及综合项目与进阶变体研究。
基础知识准备
线性代数与概率论:理解矩阵乘法、特征分解、概率分布等概念。
深度学习框架入门:熟悉至少一种深度学习框架(如 TensorFlow 或 PyTorch),了解张量运算与自动求导机制。PyTorch
序列模型基础:掌握 RNN、LSTM、GRU 等循环/门控模型的工作原理与局限。Stanford University
自注意力与多头注意力的理解学习
自注意力机制(Self-Attention)和多头注意力机制(Multi-Head Attention)是Transformer模型的核心组件,它们使模型能够有效地捕捉序列中元素之间的依赖关系。以下是对这两种机制的详细解释:
🔍 自注意力机制(Self-Attention)
自注意力机制允许模型在处理序列中的每个元素时,考虑该元素与序列中所有其他元素的关系,从而生成包含全局上下文信息的表示。
计算步骤:
- 输入表示:对于输入序列中的每个元素,模型会生成三个向量:查询向量(Query)、键向量(Key)和值向量(Value)。这些向量是通过将输入向量与训练得到的权重矩阵相乘得到的。
- 计算注意力权重:通过计算查询向量与所有键向量的点积,衡量它们之间的相似度。然后,将结果除以键向量维度的平方根,以稳定梯度。接着,使用Softmax函数对相似度进行归一化,得到注意力权重。
- 加权求和:将注意力权重与对应的值向量相乘,并对所有值向量进行加权求和,得到当前元素的输出表示。
这种机制允许模型在处理每个元素时,动态地关注序列中其他相关元素的信息,从而生成包含全局上下文的表示。
🧠 多头注意力机制(Multi-Head Attention)
多头注意力机制是在自注意力机制的基础上发展而来的。它通过并行计算多个自注意力头,每个头学习输入序列的不同子空间表示,从而捕捉到更丰富的语义特征。
工作原理:
- 线性变换:将输入向量通过不同的线性变换,生成多个查询、键和值向量组。
- 并行计算注意力:对每组查询、键和值向量,独立地计算自注意力输出。
- 拼接与线性变换:将所有注意力头的输出拼接起来,并通过一个线性变换,得到最终的输出表示。
通过这种方式,模型能够在不同的子空间中并行地学习信息,从而捕捉到更丰富的语义特征。
📚 进一步学习资源
- 详解Transformer中Self-Attention以及Multi-Head Attention - CSDN博客
- 图解Transformer之三:深入理解Multi-Head Attention - 知乎专栏
- 深入浅出Self-Attention自注意力机制与Transformer模块 - Bilibili
Transformer 架构与位置编码
Transformer 模型的 Encoder–Decoder 架构和位置编码(Positional Encoding)是其核心组成部分,特别适用于序列到序列(seq2seq)任务,如机器翻译、文本摘要等。
🧩 Encoder–Decoder 架构详解
Transformer 的 Encoder–Decoder 架构主要由两个部分组成:编码器(Encoder)和解码器(Decoder)。
🔹 编码器(Encoder)
编码器的主要功能是将输入序列转换为一组上下文相关的表示。其结构通常包括以下组件:
- 输入嵌入(Input Embedding):将输入的词汇转换为向量表示。
- 位置编码(Positional Encoding):添加位置信息,使模型能够识别序列中词汇的顺序。
- 多头自注意力机制(Multi-Head Self-Attention):允许模型在序列中不同位置之间建立联系。
- 前馈神经网络(Feed-Forward Neural Network):对每个位置的表示进行非线性变换。
- 残差连接与层归一化(Residual Connection & Layer Normalization):有助于训练更深的网络结构。(Data Science Stack Exchange)
编码器的输出是一个包含输入序列上下文信息的表示序列,供解码器使用。
🔹 解码器(Decoder)
解码器负责生成输出序列,其结构与编码器类似,但增加了以下组件:
- 掩蔽多头自注意力机制(Masked Multi-Head Self-Attention):确保模型在生成每个词时,只考虑当前位置之前的词,防止信息泄漏。
- 编码器-解码器注意力机制(Encoder-Decoder Attention):允许解码器在生成每个词时,关注输入序列的相关部分。
通过这种结构,解码器能够逐步生成输出序列,每一步都基于之前生成的词和输入序列的信息。
🧭 位置编码(Positional Encoding)
由于 Transformer 模型没有像 RNN 那样的顺序结构,它无法直接捕捉词汇的位置信息。为了解决这个问题,引入了位置编码。
🔹 原理
位置编码通过将特定的向量添加到输入嵌入中,为每个词汇提供其在序列中的位置信息。
🔹 实现方式
一种常见的方法是使用正弦和余弦函数生成位置编码:
PE
(
p
o
s
,
2
i
)
=
sin
(
p
o
s
1000
0
2
i
d
model
)
PE
(
p
o
s
,
2
i
+
1
)
=
cos
(
p
o
s
1000
0
2
i
d
model
)
\ \begin{aligned} \text{PE}_{(pos, 2i)} &= \sin\left(\frac{pos}{10000^{\frac{2i}{d_{\text{model}}}}}\right) \\ \\ \text{PE}_{(pos, 2i+1)} &= \cos\left(\frac{pos}{10000^{\frac{2i}{d_{\text{model}}}}}\right) \end{aligned} \
PE(pos,2i)PE(pos,2i+1)=sin(10000dmodel2ipos)=cos(10000dmodel2ipos)
其中,pospos 表示词汇在序列中的位置,ii 表示维度索引,dmodeld_{model} 是嵌入向量的维度。
这种方式使得模型能够通过简单的数学函数捕捉到词汇之间的相对和绝对位置信息。
📚 进一步学习资源
- Transformer’s Encoder-Decoder - KiKaBeN
- Positional Encoding Explained: A Deep Dive into Transformer PE
从零实现 Transformer
- TensorFlow 实现:阅读官方教程并在 Colab 中动手实现英葡翻译示例(Neural machine translation with a Transformer and Keras)。TensorFlow
- 纯 TensorFlow 从头实现:参考 GeeksforGeeks 教程《Transformer Model from Scratch using TensorFlow》,理解每一行代码的含义。GeeksforGeeks
- PyTorch 从零实现:阅读 DataCamp 教程《Complete Guide to Building a Transformer Model with PyTorch》,并在本地复现注意力和前馈模块。Learn R, Python & Data Science Online
- 社区示例:查阅 Medium 上的《Build your own Transformer from scratch using Pytorch》,对照实现细节。Medium
五、使用主流框架进行实践
- Hugging Face 生态:通过 Hugging Face 免费课程学习 Transformers、Datasets、Tokenizers 等库的使用,快速加载、微调预训练模型。Hugging Face
- 官方文档:深入阅读
transformers
库文档,掌握模型加载、微调、推理流程。GitHub
六、综合项目与进阶学习
- 端到端项目:选择一个 NLP 任务(如文本分类、问答、摘要生成),从数据预处理到模型部署完整实践。
- 性能优化:学习模型压缩、知识蒸馏与混合精度训练技术。
- 变体研究:探索 Vision Transformer(ViT)、T5 文本到文本架构、BERT 双向编码等。Hugging FaceScaler