Anaconda环境下的Pytorch安装及Pycharm中Pytorch环境的配置

本文详细介绍了如何在Anaconda中下载和安装不同版本的PyTorch,包括创建虚拟环境,检查GPU和驱动版本,以及在PyCharm中配置PyTorch环境的过程。
部署运行你感兴趣的模型镜像

Anaconda的下载安装(如果安装过Anaconda可以跳过):

官方网址:Download Success | AnacondaAnaconda is the birthplace of Python data science. We are a movement of data scientists, data-driven enterprises, and open source communities.icon-default.png?t=N7T8https://www.anaconda.com/download-success

点击 Download  即可下载最新版本的Anaconda。

如果想要下载旧版本的话,可以使用清华大学的镜像网站(包含了各个版本的Anaconda):Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

本文以这个版本的Anaconda作为实例

conda中Pytorch的安装(版本太低可能安装不成功!):

在conda中创建Pytorch虚拟环境:

 在  任务栏中搜索  Anaconda Prompt,点击进入:

输入以下代码进行虚拟环境的创建:
conda create -n 虚拟环境的名字 python=版本号

查看Python版本号:

Python --version

 

我的Python版本号是3.11.7所以为:

conda create -n pytorch python=3.11.7
查看是否创建成功:
conda info --envs

可以看到多出一个Pytorch环境;

进入创建的虚拟环境:
conda activate 虚拟环境名

安装Pytorch前的准备工作:

        下载Pytorch的时候有两种选择,如果电脑有GPU的话,就选择相应的CUDA下载,没有GPU的话下载CPU版本;

查看是否有GPU:

查看方法:

  1. 右键任务栏(选择任务管理器):

2. 点击性能(如果有 GPU这几个字样就说明你的电脑是有GPU的):

查看电脑的驱动版本:

下载的时候 我们需要预先知道自己电脑的驱动版本,在下载的时候需要下载比自己的驱动版本低的CUDA.

按下win+r, 输入cmd,进入终端后,输入以下代码,查看驱动版本:

nvidia-smi

        我的CUDA Driver版本就是12.3,表示的是驱动所能支持的最大运行API版本就是12.3。我如果要安装CUDA Runtime Version(运行版本),要保证CUDA Driver 版本 大于等于 CUDA Runtime 版本,也就是只能安装12.3或者在12.3之前的。

安装Pytorch:

Pytoch官网:Start Locally | PyTorch

根据自己的驱动版本选择对应的选项,然后复制最后的   代码;

下载:

进入我们在conda中创建的环境,将粘贴的代码粘贴上去:

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

 验证:

conda list

 

 如果出现Pytorch就说明成功了!

检验是否可以使用:

先进入python

python

在导入torch

import torch

运行以下代码

torch.cuda.is_available()

返回为True说明真正的安装成功 

Pycharm中Pytorch环境配置: 

打开Pycharm,点击新建项目

点击自定义环境,选择你下载的Anaconda目录,在展开环境们可以看出有一个pytorch选项,选择以后点击确定;

 检验是否可用

import torch
# 测试GPU环境是否可使用
print(torch.__version__)  # pytorch版本
print(torch.version.cuda)  # cuda版本
print(torch.cuda.is_available())  # 查看cuda是否可用

返回为True,恭喜成功配置成功!! 

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值