【斗破年番】官方改编用心了,彩鳞怀孕并未删,萧潇肯定登场,真相在丹药身上

文章分析了斗破苍穹动画对美杜莎女王怀孕剧情的改编,指出官方的用心在于保持逻辑性和合理性,关键剧情通过丹药设定与原著呼应。作者认为改编是为了更好地适应动画载体和受众,且预告了后续将圆回原著情节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【侵权联系删除】
【文/郑尔巴金】

斗破苍穹年番动画已经更新了,相信不少人都感觉到不可思议,萧炎跟随美杜莎女王回蛇人族的剧情,居然魔改成这样。好好的腹中孕育出新生命,变成了陨落心炎残余能量,不及时处理的话,还有爆体而亡的危险。正因此,引发了大量粉丝的吐槽,一度因为剧情魔改而冲上热搜。

 

刚开始小郑也是这种心态,感觉受到了欺骗,美杜莎女王的待遇一降再降,十分不理解官方的骚操作。不过当二刷三刷的时候,便开始有了别样的想法,也意识到了官方改编的用心。其实彩鳞怀孕并没有删减,而且萧潇也会肯定登场,至于真相就在丹药的身上,下面就让我们一起来看看吧!

 

为什么说官方改编是正确的,属于很用心了?因为动画是不得不进行改编的,官方也不想与原著有偏差。要知道在萧炎与彩鳞在塔底的陨落心炎失身画面,在动画中已经被删减了,抛开原著不谈,那么动画中萧炎与彩鳞根本没发生关系,那孩子又从哪里来呢?总不能平白无故的就怀孕了吧,剧情是要有逻辑性的,也是要合理性的。

 

大家只是看到了问题的表面,觉得陨落心炎事件被删,如今又把怀孕魔改成保命,对于动画的魔改,从而上升到了彩鳞的咖位与待遇问题。但是别忘了,原著小说与动画播出的载体不同,受众也是不一样,很多原著中的问题,无法在动画中进行完美的展现,不然就会遭到举报。

 

相信当初陨落心炎事件被删,官方也不太愿意,毕竟他们做了大半年的宣传,而且具体细节都动画化了,结果播出的时候,不得不删减了名场面。这一看就知道是受到了某一方的压力,不然官方何必出力不讨好,这不妥妥的找骂吗?彩鳞怀孕魔改,同样如此,既然前面没能失身,那又怎么会有身孕,即便要有身孕,也需要一个合理的方式。

 

同样的对于女儿萧潇,大家认为动画一魔改,就肯定被删了,但其实并非如此,因为官方在开播这一集之前,公布的制作组采访视频中,明确显现出了萧潇的原画设计图。虽然官方没有表明,但这个时候,这个争论中,出现萧潇的原画,只说明了一个问题,那么萧潇肯定会登场的,只是出场的方式不一样了而已。

 

那么接下来,最关键的是,萧潇如何登场呢?其实二刷三刷,我们便可以发现,真相就在七品丹药天魂融血丹上的设定。原著中对天魂融血丹并没有过多的提及,只是说达到七品炼丹师,便可以炼制成功,但是动画中却增加了不少的限制。

 

在动画中想要炼制天魂融血丹,需要炼丹师拥有三种异火,而且还需要血脉之力,才能炼制而成。这不就是为萧炎量身打造,而且重点是需要血脉之力,如果不出意外的话,彩鳞在服用天魂融血丹的时候,虽然消除了陨落心炎残余能量,但是却发生了异变,那就是吞天蟒的灵魂能量与萧炎的血脉之力从而融合,这才让彩鳞怀孕,有了女儿萧潇。

 

这不就基本上与原著类似了,而且目前的动画剧情,官方也是大量花费力气,去打造萧炎与彩鳞细微的爱情,一切都是水到渠成,到时候彩鳞怀孕,萧潇顺利出生,萧炎自然也会迎娶,举办盛大的婚礼,再次回归原著,直接给圆回来了,所以说,动画的改编其实都是在铺垫萧潇的诞生,不得不说,官方也算是用心了!

好了,本期就先写到这里,构思实属不易,如果你也喜欢斗破年番,还请一键三连,支持一下,小郑才有动力继续肝创作,我们下期再见!

想了解更多精彩内容、花絮,快来关注我吧!【文/郑尔巴金】

### GPT模型概述 GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的大规模预训练语言模型[^2]。它通过大量的无标注数据进行自监督学习,从而具备强大的自然语言理解和生成能力。 #### GPT模型的主要版本 GPT模型经历了多次迭代和发展,在不同阶段推出了多个版本,这些版本逐步提升了模型的能力和效率: - **GPT-1**:这是最早的GPT模型版本,由OpenAI于2018年发布。其核心特点是采用了单向Transformer解码器结构,并利用了大量的未标记文本数据进行预训练,随后针对特定任务进行微调[^1]。 - **GPT-2**:作为GPT-1的升级版,GPT-2显著增加了参数量并扩展了训练数据集规模,这使得它的生成能力和泛化性能得到了极大的提升。此外,还引入了一些新的正则化方法来改善训练稳定性。 - **GPT-3**:进一步扩大了模型尺寸与训练数据范围,成为当时最大的神经网络之一。除了继续增强基础的语言处理功能外,GPT-3还能执行更复杂的推理任务以及跨领域迁移应用。 - **InstructGPT系列及其他变体**:为了更好地满足实际应用场景需求,后续又开发出了专门面向指令跟随等特殊用途优化过的子型号如InstructGPT等。 #### GPT模型的核心架构——Transformer 所有上述提到的不同代际下的具体实现均建立在同一个关键技术框架之上即Transformers。此架构最初是由Google Brain团队提出用于解决序列到序列问题的一种新型深度学习模型设计思路。相比传统的RNN/LSTM结构而言,它完全摒弃掉了循环机制转而依靠注意力机制(Attention Mechanism),允许模型平行计算输入序列中的各个位置之间的关系,极大地提高了训练速度与效果。 以下是简单的Python伪代码展示如何构建一个基本形式上的transformer层: ```python import torch.nn as nn class TransformerLayer(nn.Module): def __init__(self, d_model, num_heads, dropout=0.1): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout) self.linear_layers = nn.Sequential( nn.Linear(d_model, 4 * d_model), nn.ReLU(), nn.Linear(4 * d_model, d_model) ) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout(attn_output) x = self.norm1(x) linear_output = self.linear_layers(x) x = x + self.dropout(linear_output) x = self.norm2(x) return x ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值