目录
一、做题心得
今天是代码随想录打卡的第16天,来到了二叉树系列的part4。今天的题,个人感觉还是挺有难度的,尤其是对于第一次接触二叉树路径这种问题还有通过已知的两大遍历来构造二叉树,依旧考查的是对递归的应用。果然,递归才是直通二叉树的钥匙。不过递归并不好想到,或许看着题解都能比较好理解,但如何应用就成了难点--通过最近递归的练习,只能说多做,多记,多总结。
好了,话不多说,直接开始正题。
二、题目与题解
题目一:513. 找树左下角的值
题目链接
给定一个二叉树的 根节点
root
,请找出该二叉树的 最底层 最左边 节点的值。假设二叉树中至少有一个节点。
示例 1:
输入: root = [2,1,3] 输出: 1示例 2:
输入: [1,2,3,4,null,5,6,null,null,7] 输出: 7提示:
- 二叉树的节点个数的范围是
[1,104]
-231 <= Node.val <= 231 - 1
题解:BFS
先看看实现结果吧:
这已经是这几天二叉树打卡碰到的第n道可以用层序遍历(BFS)做的题目,这里可以直接套模板。除此之外只需要将每一层的层序遍历方向变成从右往左即可,这样根据队列先进先出的特点,最后到达记录的就是最底层最左边的节点。
不会层序遍历的可以看看前边打卡的模板:【代码随想录训练营第42期 Day13打卡 二叉树的遍历-- LeetCode 144. 二叉树的前序遍历 94. 二叉树的中序遍历 145. 二叉树的后序遍历 102. 二叉树的层序遍历-CSDN博客
代码如下:
class Solution {
public:
int findBottomLeftValue(TreeNode* root) {
queue<TreeNode*> q;
int ans = 0;
q.push(root);
while (!q.empty()) { //层序遍历(从右到左)
TreeNode* node = q.front();
q.pop();
ans = node->val;
if(node->right) q.push(node->right); //右子节点先进队列
if(node->left) q.push(node->left); //左子节点后进队列,后进后出,最后ans记录的就是最底层的最左边的节点
}
return ans;
}
};
题目二:112. 路径总和
题目链接
给你二叉树的根节点
root
和一个表示目标和的整数targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和targetSum
。如果存在,返回true
;否则,返回false
。叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22 输出:true 解释:等于目标和的根节点到叶节点路径如上图所示。示例 2:
输入:root = [1,2,3], targetSum = 5 输出:false 解释:树中存在两条根节点到叶子节点的路径: (1 --> 2): 和为 3 (1 --> 3): 和为 4 不存在 sum = 5 的根节点到叶子节点的路径。示例 3:
输入:root = [], targetSum = 0 输出:false 解释:由于树是空的,所以不存在根节点到叶子节点的路径。提示:
- 树中节点的数目在范围
[0, 5000]
内-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
题解:递归
这道题的递归思路老实说还真不好想到。
首先,我们先列出特殊情况(同时也是递归结束条件):
1.根节点为空时:没有节点,直接false
2.只有根节点(没有左右子节点时):判断根节点的值是否等于targetSum既可
然后就是递归的实现:分别对左右子树路径进行,这里对左右子树路径而言,已经少了根节点,就需要减去根节点的值,即targetSumm - root->val。
代码如下:
class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
if (root == nullptr) return false;
if (!root->left && !root->right) return root->val == targetSum;
return hasPathSum(root->left,targetSum - root->val) || hasPathSum(root->right,targetSum - root->val);
}
};
题目三:113. 路径总和II
题目链接
给你二叉树的根节点
root
和一个整数目标和targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22 输出:[[5,4,11,2],[5,8,4,5]]示例 2:
输入:root = [1,2,3], targetSum = 5 输出:[]示例 3:
输入:root = [1,2], targetSum = 0 输出:[]提示:
- 树中节点总数在范围
[0, 5000]
内-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
题解:DFS递归实现
这道题其实对于路径求和的思路和上一道题是差不多的,就是每次存放了当前的根节点之后,就要减去根节点的值,即每次移除后:targetSum -= root->val;直到targetSum的值为0时,就代表这条路径满足题目条件存入ans结果数组中。
这里注意的是,在对于根的左右子树进行递归之后,需要进行回溯,除去当前节点值,重新另一条路径(不除去的话,就会有不在当前路径的值(之前路径出现的)出现)。
代码如下:
class Solution {
public:
vector<vector<int>> ans; //存储满足的结果路径
vector<int> path; //存放临时路径
void dfs(TreeNode* root, int targetSum) {
if (root == nullptr) return;
path.push_back(root->val); //当前节点值存放到临时路径
targetSum -= root->val; //更新剩余目标和
if (root->left == nullptr && root->right == nullptr && targetSum == 0) { //当前节点满足题目要求时(也是递归终止条件)
ans.push_back(path);
}
dfs(root->left, targetSum); //递归:分别递归地搜索左右子树
dfs(root->right, targetSum);
path.pop_back(); //回溯,移除当前节点值探索其他路径(不回溯的话,path仍然包含不应该包含在当前路径中的节点值)
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
dfs(root, targetSum);
return ans;
}
};
第四题:106.从中序与后序遍历序列构造二叉树
题目链接
106. 从中序与后序遍历序列构造二叉树 - 力扣(LeetCode)
给定两个整数数组
inorder
和postorder
,其中inorder
是二叉树的中序遍历,postorder
是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。示例 1:
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3] 输出:[3,9,20,null,null,15,7]示例 2:
输入:inorder = [-1], postorder = [-1] 输出:[-1]提示:
1 <= inorder.length <= 3000
postorder.length == inorder.length
-3000 <= inorder[i], postorder[i] <= 3000
inorder
和postorder
都由 不同 的值组成postorder
中每一个值都在inorder
中inorder
保证是树的中序遍历postorder
保证是树的后序遍历给定两个整数数组
inorder
和postorder
,其中inorder
是二叉树的中序遍历,postorder
是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
题解:递归
个人感觉,第一次做这道题难度还是比较大。就是你具备的理论知识可能已经让你有思路去想这一道题,但是不知道如何用代码实现。
一个提示:vector<int> vec(0,n):表示vec数组下标从0到n-1(左闭右开)
思路步骤如下:
- 基础情况处理:
- 如果后序遍历数组为空,说明没有节点可以构建,直接返回
nullptr
表示空树。 - 如果后序遍历数组只有一个元素,说明整棵树只有一个节点,这个节点就是根节点,直接创建并返回这个节点。
- 如果后序遍历数组为空,说明没有节点可以构建,直接返回
- 定位根节点:
- 后序遍历数组的最后一个元素是整棵树的根节点的值。您已经正确地取出这个值,并创建了一个新的树节点作为当前子树的根节点。
- 分割中序遍历数组:
- 在中序遍历数组中找到根节点的值,并确定其索引
index
。 - 根据这个索引,将中序遍历数组分割为左子树的中序遍历数组(从开头到
index-1
)和右子树的中序遍历数组(从index+1
到末尾)。
- 在中序遍历数组中找到根节点的值,并确定其索引
- 分割后序遍历数组:
- 您已经正确地根据左子树在中序遍历中的节点数(即
leftinorder.size()
)来分割后序遍历数组。 - 左子树的后序遍历数组是从
postorder.begin()
到postorder.begin() + leftinorder.size()
(不包括根节点)。 - 右子树的后序遍历数组是从
postorder.begin() + leftinorder.size()
到postorder.end() - 1
(去掉整棵树的根节点)。
- 您已经正确地根据左子树在中序遍历中的节点数(即
- 递归构建子树:
- 使用分割后的中序遍历和后序遍历数组,递归地调用
buildTree
函数来构建左子树和右子树。 - 将构建好的左子树和右子树分别连接到当前根节点的左右子节点上。
- 使用分割后的中序遍历和后序遍历数组,递归地调用
- 返回根节点:返回当前构建好的根节点,该节点及其子树已经根据给定的中序遍历和后序遍历数组完全构建完成。
代码如下:
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (postorder.size() == 0) return nullptr; //后序遍历数组为空则二叉树为空
int value = postorder[postorder.size() - 1]; //后序遍历数组的最后一个元素是根节点值
TreeNode* node = new TreeNode(value); //初始化建立树结构(根节点赋值为value)
if (postorder.size() == 1) return node; //后序遍历数组只有一个元素则二叉树只有一个节点
int index;
for (index = 0; index < inorder.size(); index++) { //找到根节点(的值)在中序遍历数组的位置索引index
if (inorder[index] == value) {
break;
}
}
//中序遍历中:根据根节点的位置(index处),分割出左子树(index左)和右子树(index右)的中序遍历数组
vector<int> leftinorder(inorder.begin(), inorder.begin() + index);
vector<int> rightinorder(inorder.begin() + index + 1, inorder.end());
//后序遍历中:分割出左右子树的后序遍历数组(注意右子树后序遍历不包括最后一个元素--因为最后一个元素是整棵树的根节点)
vector<int> leftpostorder(postorder.begin(), postorder.begin() + leftinorder.size());
vector<int> rightpostorder(postorder.begin() + leftinorder.size(), postorder.end() - 1);
//递归构建左子树和右子树
node->left = buildTree(leftinorder, leftpostorder);
node->right = buildTree(rightinorder, rightpostorder);
return node;
}
};
三、小结
今天的打卡到此也就结束了,事实证明,想学好二叉树,得学好递归。最后,我是算法小白,但也希望终有所获。