Description
话说天下大势,分久必合,合久必分。。。却道那魏蜀吴三国鼎力之时,多少英雄豪杰以热血谱写那千古之绝唱。古人诚不我欺,确是应了那句“一将功成万骨枯”。
是夜,明月高悬。诸葛丞相轻摇羽扇,一脸愁苦。原来是日前蜀国战事吃紧,丞相彻夜未眠,奋笔急书,于每个烽火台写下安排书信。可想,这战事多变,丞相运筹 帷幄,给诸多烽火台定下不同计策,却也实属不易。
谁成想这送信小厮竟投靠曹操,给诸葛丞相暗中使坏。这小厮将每封书信都投错了烽火台,居然没有一封是对的。不多时小厮便被抓住,前后之事却也明朗。这可急坏了诸葛丞相,这书信传错,势必会让蜀军自乱阵脚,不攻自破啊! 诸葛丞相现在想知道被这小厮一乱,这书信传错共有多少种情况。
Input
输入一个正数n,代表丞相共写了n(1 <= n <= 20)封书信。
Output
输出书信传错的情况数。
Sample
input
3
output
2
【题解】
很典型的错排问题,运用递推公式便可以轻松结局。那么公式是怎么推出来的呢?
设f(n)表示第n个数的错排方法数,首先把第n个数放在一个数的位置k,有n - 1种方法。接下来放第k个数,有如下两种情况:
1.把它放到位置n,那么,对于剩下的 n - 1 个数,由于第k个数放到了位置n,剩下n - 2 个数就有f(n-2)种错排方法数。
2.第k个数不把它放到位置n,这时,可视作这 n - 1 个数错排,即f(n-1) 。
因此,可以得到递推公式: f(n) = (n-1) * (f(n-1) + f(n-2)) 。
初始条件为: f(1) = 0 , f(2) = 1 。
Code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll f[23];
int main()
{
int n;
cin >> n;
f[1]=0;
f[2]=1;
for(int i=3; i <= n; i++)
{
f[i]=(i-1)*(f[i-1]+f[i-2]);
}
cout << f[n];
return 0;
}