函数(高等数学)

目录

函数的概念

函数类型

比较罕见的不常规函数

反函数

反函数的一些特点

复合函数 

初等函数 

函数的特性 

函数的有界性

函数的单调性 

 函数的奇偶性

函数的周期性

数列的极限极限

数列的极限定义

如何用定义法证明数列极限 

收敛数列的性质

收敛数列的性质——唯一性

收敛数列的性质二——有界性 

发散,收敛,有界,无界的关系

收敛数列的性质三——保号性 

收敛数列的性质四——收敛数列与其子数列 

函数的极限

函数的极限的定义

函数的左右极限 

证明函数极限存在:左右极限

左右极限的常见问题 

函数的极限性质 

函数极限的性质一——唯一性

 函数极限的性质二——有界性

函数极限的性质三——保号性

函数极限的性质四 ——函数极限与数列极限的关系

无穷大和无穷小

无穷小的定义

 无穷小的定理一(无穷小与极限的关系)

无穷大的定义

无穷大的特点 

无穷大与无界变量的关系 

无穷大与无穷小的相互转化 

极限的运算法则 

无穷小的运算法则 

一般式的运算法则 

多项式和分式的极限运算   

​编辑

复合函数的运算法则

极限存在法则 

夹逼准则 

单调有界原则

 两个重要极限

柯西审敛原理

无穷小的比较

无穷小的种类 

关于等价无穷小的定理

定理1——两个等价无穷小的充要条件

定理2——等价无穷小可互换

常见的等价无穷小 

函数的连续性 

函数连续性的定义 

间断点 

间断点分类

连续函数的运算与初等函数的连续性 

连续函数的和、差、积、商 

反函数的连续性 

复合函数的连续性 

初等函数的连续性 

闭区间上连续函数的性质

性质一:有界性与最大值最小值定理

性质二:零点定理        

性质三: 介值定理

性质四:函数的一致连续性 


函数的概念

        定义:如果对于每个数x∈D ,变量x按照一定的法则总有一个确定的y和它对应,则称x是y的函数,记为y= f(x).常称x为自变量,y为因变量,D为定义域。

函数类型

比较罕见的不常规函数

绝对值函数

 符号函数

取整函数 

反函数

        设函数y = f(x)的定义域为D,值域为R,若对任意y ∈ R,,有唯一确定的x ∈D,使得y=f(x),则记为y=f^{-1}(x),称其为函数y= f(x)的反函数。

         注意:原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

如何作出当前函数的反函数

        

比较常见的反函数 

反函数的一些特点

        1.不是每个函数都有反函数,比如y=x^{^{2}}

         总结来说,y=x^{^{2}}在整个实数域上没有全局定义的反函数,但是可以在限制定义域的情况下得到局部定义的反函数。

        2.单调函数一定有反函数,而反函数不一定单调

        与上方y=x^{^{2}}道理类似,某些分段函数可以局部定义域中单调递增或者递减,但整体函数不单调,如 

复合函数 

例题 

初等函数 

1.幂函数 

 

2.指数函数 

         

        单调性:单调性:当a>1时,y = a^{x}单调增;当0<a<1时,y = a^{x}单调减。

3.对数函数

        单调性:当a>1时,y=\log_ax 单调增;当0<a<1时,y=\log_ax 单调减 。

4.三角函数

(1)正弦函数sinx与余弦函数cosx

(2)正切函数tanx与余切函数cotx       

5.反三角函数

        三角函数的反函数,其定义域与值域互换

(1)arcsinx与arccosx

(2)arctanx与arccotx

函数的特性 

函数的有界性

        定义:若存在M>0,任意x ∈ I,|f(x)|≤M,则称f(x)在I上有界。有界=有上界且有下界。

例题 

函数的单调性 

单调递增: 任意x1,x2∈I,当x1<x2,时,恒有f(x1)<f(x2)

 

单调递减:任意x1,x2∈I,当x1>x2时,恒有f(x1)<f(x2)

 

 函数的奇偶性

 

        注意:偶函数的图形关于y轴对称;奇函数的图形关于原点对称,且若f(x)在x=0处有定义,则f(0)=0. 

函数的周期性

        定义:若存在实数T>0,对于任意x ,恒有f(x+T)= f(x),则称y=f(x)为周期函数.使得上述关系式成立的最小正数T称为f(x)的最小正周期,简称为函数f(x)的周期。

 

数列的极限极限

数列的极限定义

        当n无限增大时,xn越来越接近于某一实数,这个实数就叫做数列xn的极限,也可以称数列Xn收敛于a


         根据以上可以推断出数学逻辑如下:

        数列的极限是否存在仅与它的发展趋势有关,只要从某项N(n >N)开始,有∣xn-a即可,与前面有限项的变化无关。 

如何用定义法证明数列极限 

         

         大致是逆推顺证的道理,具体证明方法如下:

例题举例:证明该函数的极限 

例题举例:利用数组极限证明数组极限

收敛数列的性质

收敛数列的性质——唯一性

        定理1(极限的唯一性):如果数列Xn收敛,那么它的极限唯一
 

 证明唯一性:反证法

收敛数列的性质二——有界性 

        如果数列{xn}一定收敛,那么数列{xn}一定有界

        只要N的前半部分每一项是确定的值,而后面开始收敛就能说明它的有界性

证明收敛数组有界如下: 

发散,收敛,有界,无界的关系

         

收敛数列的性质三——保号性 

       N开始进入收敛区域:

  • 若a>0,从N开始无限接近a的每一个序列也大于0。
  • 若a<0,从N开始无限接近a的每一个序列也小于0  

数列保号性的两条推论 

(1)数列的保号性

             假设\operatorname*{lim}_{n\to\infty}x_{n}=A,

        推论1:若A>0(或A<0), \exists N>0,当n>N时,xn>0(或xn<0)

        该推论是用极限值的正负来推敲数列项的正负。  

        推论2:如果存在N>0,当n>N时,xn≥0(或A≤0 ),则xn≥0(或A≤0)

        

        该推论是用数列的正负来推敲极限值的正负。 

 保号性的证明

收敛数列的性质四——收敛数列与其子数列 

 

子数列的概念 

证明如下:

函数的极限

函数的极限的定义

        函数极限的定义:与上列数组的定义法类似,详情看函数极限定义

先简单聊聊该定义中的一些参数


 

现在来研读定义的理解

         函数的极限,是指x趋近与x0这个点时,x无限逼近这个点,但一直取不到,就称\operatorname*{lim}_{x\rightarrow x_{0}}f(x)=L。(即在x无限趋近于x0时,函数极限值为L)。

函数的左右极限 


 

         注意:在函数极限中x→∞是指|x|→+,既可以指正无穷也可指负无穷,而在数列极限中,n→∞是指n→+∞。

        函数极限:当x向某个值x(或无穷远处)靠近时,f(x)向哪个值靠近。向无穷远处靠近有三种结果,向X0靠近有三种结果。 

证明函数极限存在:左右极限

         当我们讨论一个函数是否存在极限时,通常我们指的是函数在某一点或某一区间上的局部极限行为。注意看清极限趋于的方向与范围,比如\operatorname*{lim}_{x\to\infty}f(x)\operatorname*{lim}_{x\to-\infty}f(x)就是两种处理方法。

        极限\operatorname*{lim}_{x\to x_{0}}f(x)存在极限的充要条件是左极限\operatorname*{lim}_{x\to x_{0}^{-}}f(x)与右极限\operatorname*{lim}_{x\to x_{0}^{+}}f(x)存在并且相等;\operatorname*{lim}_{x\to\infty}f(x)存在极限的充要条件\operatorname*{lim}_{x\to-\infty}f(x)\lim_{x\to+\infty}f(x)存在并且相等

左右极限的常见问题 

         注意:需要分左、右极限求极限的问题常见有以下几种:

        1.分段函数在分界点处的极限,而在该分界点两侧函数表达式不同(这里也包括带有绝对值的函数,如\lim_{x\to0}\frac{\mid x\mid}x)。

        2.\mathrm{e}^{\infty}型极限(如\operatorname*{lim}_{x\to0}\mathrm{e}^{\frac{1}{x}},\operatorname*{lim}_{x\to\infty}\mathrm{e}^{x},\operatorname*{lim}_{x\to\infty}\mathrm{e}^{-x}

 例题

        3.arctan \infty型极限 

 例题

函数的极限性质 

函数极限的性质一——唯一性

         与数列的唯一性类似,即极限不能既是a,又是b

 函数极限的性质二——有界性

        若\operatorname*{lim}_{x\rightarrow x_{0}}f(x)存在,则f(x)在x0某去心邻域有界(即局部有界)。

        

        局部有界性:凸显了局部的特点,只保证在极限所映射的去心邻域范围内的有界性

有界不一定存在极限:

        证明函数局部有界的方法如下(使用了函数极限的定义法):

函数极限的性质三——保号

        局部保号性:也是保证极限A所映射的去心邻域的正负与极限正负一致

保号性的两条推论

        假设 \operatorname*{lim}_{x\to x_0}f(x)=A.

        推论1:如果A>0(或A<0),则存在\delta>0,当x\inU(x0,\delta)时,f(x)>0(或f(x)<0 ) 。 

        该推论是用极限值的正负来推敲函数值的正负。 

         

        推论2:如果存在\delta >0,当x\inU(x0,\delta)时,f(x)≥0(或f(x)≤0),那么A≥0(或A≤0)。

        该推论是用函数值的正负来推敲极限值的正负。 

例题 

        极值的定义是怎样一回事?

        而上方题述中,已知极限点和极值,又通过一系列操作得知f(a)>f(x),可综上两点得出f(a)是极大值。

函数极限的性质四 ——函数极限与数列极限的关系

无穷大和无穷小

无穷小的定义

        无穷小:如果函数f(x)当x →x0(或x →\infty)时的极限为零,则称f(x)为x →x0(或x →\infty)时的无穷小量。


无穷小重要的两点:

  • 极限值为0
  • x趋近x0这个过程

        1.无穷小是变量,不能与很小的数混淆。

        2.零是可以作为无穷小的唯一的数。

 无穷小的定理一(无穷小与极限的关系)

         

        无穷小定理的重大意义:它可以将这个函数转变成一个一个具体的值加一个无穷小量,但是它一定要有条件——是在X趋近于X0的过程。

        如果你不加任何限制条件,任何函数是不可能等于一个常数值加一个无穷小量的。
 


下面该例很好地说明了此情况

证明无穷小的定理

无穷大的定义

 

无穷大的特点 

1)无穷大是一个变量,它与很大的数不同。

2)无穷大一定无界,无界不一定是无穷大。

无穷大与无界变量的关系 


举例说明

无穷大与无穷小的相互转化 

        注意无穷大与无穷小的前提:在自变量的同一变化过程中,即同样的x朝着同样的方向趋近相同的点

该定理的证明:

极限的运算法则 

无穷小的运算法则 

一般式的运算法则 

        已知两个函数都存在极限,即可得出一般式的运算法则如上,且可推出推论如下:


  • 推论3:如果lim f(x)存在,而c为常数.那么\lim[cf(x)]=c\lim f(x)
  • 推论4:如果lim f(x)存在,而n是正整数,那么\lim[f(x)]^n=[\lim f(x)]^n
  • 定理5:如果\varphi(x)\geq\psi(x),而\lim\varphi(x)=A,\lim\psi(x)=B,那么A \geqB。

多项式和分式的极限运算   

       

复合函数的运算法则

 ​​​​

Q:为什么g(x)≠ u0


A:给外函数求极限,其自变量u趋近u0,是取不到u0的,但如果内函数g(x)中的函数值作为外函数的自变量等于u0,则说明了外函数不是趋近u0而是已经取值u0了

极限存在法则 

夹逼准则 

夹逼准则的证明 


单调有界原则

        定义:单调递增或单调递减的有界数列必有极限。

 两个重要极限

 

柯西审敛原理

        只要数列存在极限,到某一个序列之后,任意两项之间的这个距离都比原来给定的去心邻域要小

无穷小的比较

        若\lim_{x\to x_0}f(x)=0, 则称 f(x)在x->x0时的无穷小量。

无穷小的种类 

        因为不同函数趋于极限点的快慢程度不同,所以到达无穷小的快慢也有所不同

        以上的公式成立前提——函数极限存在或者等于无穷,如振荡函数\operatorname*{lim}_{x\rightarrow0}\frac{x\sin\frac{1}{x}}{x}就不存在。 

       

例题 

关于等价无穷小的定理

定理1——两个等价无穷小的充要条件

        a(x)~B(x)的充要条件是a(x)=B(x)+o(B(x))。

证明过程如下:

定理2——等价无穷小可互换

     

 要注意以下两点:

  • 替换的等价无穷小只能作用于乘除,不能用于加减,如例题2
  • 替换等价无穷小可以单个替换,如例题3
常见的等价无穷小 

例题  

 

函数的连续性 

函数连续性的定义 

       
 

         需要注意的有两点:

  • 一是函数在领域内有定义,这样就保证了函数在X零点及其附近有定义。
  • 二是所谓的连续,指的是函数在X0这一点连续,也就是说这里定义的仅仅是一个点

         我们还能从左右连续都存在判断这个点的连续性:

        证明在定义域R上连续,要单独对\Deltay进行设值,这可以体现取x点的任意性,进而证明全局的点连续

间断点 

        

间断点分类

第一类间断点:(左、右极限都存在)

第二类间断点: (左、右极限有一边不存在)

连续函数的运算与初等函数的连续性 

连续函数的和、差、积、商 

        定理1:设函数f(x)与g(x)在点x0连续,则它们的和差积商(f\pmg、fxg及f/g(当g(x)≠0时))都在点x0连续。

反函数的连续性 

        定理2: 如果函数y=f(x)在区间I_x上单调增加(或单调减少)且连续,那么它的反函数x=f'(y)也在对应的区间I_{y}=\{y\mid y=f(x),x\in I_{_x}\}上单调增加(或单调减少)且连续。

复合函数的连续性 

初等函数的连续性 

        初等函数的连续性:基本初等函数在它们的定义域中都是连续的,一切初等函数在其定义区间都是连续的。

    

闭区间上连续函数的性质

         为什么要证明一个函数是否连续性,因为连续函数也有一些性质可是用于数学证明。那么什么是闭区间的连续函数?

性质一:有界性与最大值最小值定理

        在闭区间连续的函数在该区间上有界且一定能取得最大值和最小值

性质二:零点定理        

        由于这个性质的结论是说有函数值为零的点,因此经常被用在判断方程的根上

 例题

性质三: 介值定理

        对于闭区间连续的函数,如果左右端点不相等,那么介于A,B之间任意一个数都能取到

例题

性质四:函数的一致连续性 

         也就是说我们任意给定一个函数值,存在一个定义区间,该定义区间的距离减少,函数值的距离也跟着减少。

例题 

  • 24
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值