- 博客(210)
- 收藏
- 关注
原创 P3-Python学习当中的两大法宝函数
打开pycharm,在命令行当中先检测是否是在envs当中的pytorch环境里面,或者导入torch包是否成功。证明torch目录以下有cuda包。
2023-10-06 12:45:08 174
原创 第八章-第一节-重极限 连续 偏导数 全微分
第一节 重极限、连续、偏导数、全微分1、二元函数2、二元函数的极限例1使用绝对值趋向于0,然后夹逼即可得到结论。例2[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HrJV2Dsg-1626596981601)(C:/Users/Einstein/AppData/Roaming/Typora/typora-user-images/image-20210714075631651.png)]3、多元函数的连续性只要判断函数在一点上的连续性,特别是分段函数在分界点
2021-07-18 16:30:13 639 1
原创 第七章-微分方程习题
微分方程常考习题一、方程求解例16判别类型选择方法,一阶齐次方程例17如果发现哪种类型都不属于1、xy对调;2、变量代换例18常规题例19常规题例20例21根据解的结构,找到齐次方程的两个特解,找到λ的方程,从而确定常数。例22例23使用解的结构定理非齐次方程的通解:齐次方程的通解+非齐次方程的特解齐次方程的通解 = 两个非齐次特解的线性组合非齐次方程的特解之差 = 齐次方程的特解二、综合题例24直接代入x0到方程中去例25因为二阶导数连续
2021-07-18 16:00:55 2443 1
原创 第七章-微分方程
一、常微分方程的基本概念微分方程:含有未知函数和未知函数的导数或者未知函数的微分的方程。微分方程的阶:未知函数导数的最高阶数。微分方程的解:满足未知函数的具体函数满足方程。微分方程的通解:含有独立任意常数的个数等于微分方程的阶。微分方程的特解:通过初始条件确定通解中的任意常数的值,确定一个具体的函数。积分曲线:通解对应的一组曲线二、一阶微分方程1、可分离变量的方程2、齐次方程将y/x记做u,就可以化成一次函数,可分离变量的方程。3、线性方程线性是指y和y’的次数都是一次三、
2021-07-18 14:24:33 1085 1
原创 第六章 定积分的应用-例题
一、平面域的面积和体积例1例2例3例4确定区域后,为常规问题例5直接带公式二、物理应用例6W = F * S,只要对S距离顶点的距离进行积分即可。例7压力 = 压强*面积压强*窄带子的面积,然后对其积分。...
2021-07-11 21:17:36 627
原创 第六章 定积分的应用
定积分的应用一、几何应用1、平面图形的面积计算面积,可以在平面域上对1使用二重积分2、旋转体的体积问题绕x轴旋转:积分单位是圆柱,底面圆的面积*高度(dx)***底面圆面积 = π[f(x)^2],Vx = π*∫ [f(x)^2]dx绕y轴旋转:积分单位是一个空心圆柱,计算体积需要从中间剖开,计算展开的长方体的体积。长方体的长是绕成圆的周长,为2πx。宽是f(x),厚度是dx,然后进行积分。Vy = 2π∫xf(x)dxY缺X,X -> f(x)^2,Y -> 2fx
2021-07-11 21:15:50 3349
原创 高数基础-第五章-反常积分的计算
例22积分需要区分不同函数例23一般结论:如果被积函数存在跳跃间断点,则原函数在分界点上连续不可导。左导数等于被积函数的左极限,右导数等于被积函数的右极限。例24需要确定b,分母的被积函数恒为正,所以b = 0例25变上限积分上除了使用常规的变量替换,还可以使用积分中值定理,将极限等于非0常数往外搬。例26有关变上限函数加隐函数求导问题,先计算出定点的xy值,然后求导代入。第二节 反常积分一、无穷区间上的反常积分P>1 收敛;P<=1 发散二、无界函数上的反
2021-07-11 15:13:45 23481 2
原创 第五章-定积分和反常积分-第一节
第一节 定积分一、定积分的概念1、定积分的定义2、定积分存在的条件极限存在性->是否可积3、定积分的几何意义二、定积分的性质1、不等式性质2、中值定理三、积分上限的函数四、定积分的计算...
2021-07-05 17:30:19 258
原创 第四章-不定积分-知识点
一、不定积分的概念和性质三、三种主要分部积分法1)第一类换元法(凑微分法)2)第二类换元法3)分部积分法1、何时用?两类不同函数相乘2、如何用?多项式*(指数/三角)将多项式以外的凑进去。多项式*(对数函数,反三角函数)将多项式凑进去。指数*三角,需要凑两次,谁凑进去都可以。四、三类常见可积函数积分...
2021-07-05 11:01:29 567
原创 07 高数-第三章-微分中值定理及导数的应用
考试概要一、微分中值定理两个泰勒公式1、本质:建立函数与高阶导数的关系,用多项式去逼近函数。2、不同点,条件不同,余项不同。皮亚诺余项 - 局部泰勒 -> 极限,极值拉格朗日余项 - 整体泰勒公式 -> 最值,不等式二、导数的应用1、函数的单调性2、函数的极值** 在函数可导的条件下,极值点肯定是驻点。**第一充分条件:导数两侧变号。第二充分条件:一阶导数等于0,二阶导数不等于0。3、函数的最大值和最小值4、曲线的凹凸性和极值的一个必要两个充分对应1
2021-07-04 15:51:33 613 2
原创 第一章-第二节-极限
考试概要一、极限的概念1、数列极限的概念(1)ε是用来限制,数列极限与常数的接近程度的,N是表示数列N项以后的极限。(2)几何意义是,任取N的ε邻域内,都找到N,在其以后的所有项的值都落在A的ε领域里面。(3)极限与前有限项无关,在利用单调有界准则的时候,可以取后面的项单调有界的规律来求数列极限。(4)数列极限存在,可以推导部分列极限存在。奇偶列存在并且相等才能推导出数列极限存在。2、函数极限2.1、当自变量趋向于无穷大的时候2.2、自变量趋向于有限值的极限(1)ε是用来逼近函数值
2021-07-03 21:57:41 4903 2
原创 高数基础_第一章_第一节_函数
第一节 函数概要一、函数概念和常见函数1、函数概念只要确定了定义域和对应法则就唯一确定一个函数2、常见函数符号函数和取整函数3、复合函数复合函数的定义域只会比里面函数定义域要小4、反函数反函数的复合,无论是哪个在里面,最终结果都是自变量。函数与其反函数是以y = x为对称的。5、初等函数二、函数的四大基本形态1、单调性2、奇偶性3、周期性4、有界性常见考题一、函数四大基本形态的判定二、复合函数...
2021-07-02 16:39:06 812
原创 2.1 矩阵的运算
矩阵的运算行列式表示的一个数,矩阵表示一个数表。1、加法运算同形的矩阵(行和列是一样的)才可以相加2、数乘数乘是数乘上矩阵中的所有元素3、乘法运算必须满足前面的列数和后面的行数相等,才可以进行相乘。结果的行数是第一个的行数,列数是第二个的列数乘法不满足交换律。乘出来是零矩阵,无法推测出A或B是零矩阵4、转置运算5、方阵的行列式...
2021-07-02 14:30:27 2619
原创 IO方式-程序中断方式
不同的I/O中断请求需要不同的中断服务程序处理中断判优:从多个中断源请求中响应其中一个中断源。中断隐指令:保存原有的PC值,将PC值调整成中断服务程序的地址。中断服务程序:执行中断处理的程序。使用中断请求触发器记录是哪个硬件发出的中断请求中断判优中断判优可以通过硬件或者软件的方式判断优先响应哪个中断源中断处理过程中断隐指令步骤1、关中断2、保存断点3、引出中断服务程序,根据硬件排队器选出中断判优的中断响应,通过中断向量地址形成部件形成向量地址。根据向量地址可以找到中断向量(中断
2021-07-01 16:01:07 3360
原创 行列式的定义&性质
行列式的定义行列式可以视为作用在矩阵上的运算,只能作用在方阵上面的运算。关键:项数为n!每项是来自不同行和不同列的乘积答:按照一列一列对元素进行选取,对于t需要按照列数的逆序数进行计算行列式的性质1.矩阵的转置,行列式不变矩阵转置,为第n行变成第n列2.两行/列进行互换,行列式变号3.某一行的公因子可以提到行列式的外面4.如果某两行成比例,则行列式的值为05.行列式可以按行来拆分运算,如果进行拆分,则某一行拆开,其余的行值不变。6.某行/列k倍,加到另一行/列,行列
2021-06-12 22:44:02 5509
原创 7.4_三种的IO控制方式
程序查询方式程序查询的流程图程序中断方式处理流程多重中断DMA控制器DMA传送流程图DMA与CPU同时访问内存发生冲突
2021-06-08 19:18:16 1163 1
原创 7.3_I/O接口
IO接口的作用外部接口和内部接口IO接口的工作原理接口和端口IO接口中有多个寄存器未IO端口,需要编址,用来让CPU访问的是哪个寄存器统一编址&独立编址IO接口的类型
2021-06-08 15:41:20 103
原创 7.2_输入输出设备
VRAM显存和VRAM带宽磁盘存储器性能指标磁盘地址驱动器号:选择哪个磁盘柱面号:选择磁道盘面号:选择哪个盘面,激活哪个磁头扇区号:选择读取磁道的哪个盘面RIAD
2021-06-08 14:52:25 82
原创 4.2.4_CISC&RISC和堆栈寻址
堆栈寻址CISC和RISC细节:CISC可以访存的指令不限制,RISC可以访存的指令只有两条。所以CISC需要的寄存器比较少,RISC需要的寄存器比较多
2021-05-31 16:26:01 242
原创 4.2.3_数据寻址_偏移寻址
偏移寻址形式地址记录的都是偏移量,三种偏移寻址的方式不同的只是参考偏移的目标不同基址寻址使用的是基址寄存器的内容作为偏移目标,实际操作数地址 = 基址 + 偏移量(形式地址)可以使用专门的基址寄存器,也可以使用通用寄存器,指令需要添加符号位标明是哪个通用寄存器充当基址寄存器程序员可以操控寄存器当中的值,但是不能操控基址寄存器当中的内容变址寻址对比基址寻址而言,变址寻址的内容可以被用户所改变,形式地址作为标准,变址寄存器中的内容作为偏移量。基址寻址和变址寻址的复合首先将形式地址+基址
2021-05-31 16:00:03 1286
原创 4.1.2_指令寻址&数据寻址_Part1
指令寻址数据寻址指令寻址,是根据地址找到下一条指令数据寻址,是确定地址码指明的真实地址以下的例子表明的是同一个真实地址,解释的方式不同相较于内存的地址相较于程序的起始地址的偏移量PC+1过后的偏移量添加寻址特征位来区分数据寻址的方式通过寻址特征解释用什么方式来解读形式地址来得到真实地址直接寻址形式地址就是操作数真实的地址访问主存次数:1. 取指令;2.根据形式地址找到操作数 优点:简单直接,指令执行阶段只需要访问一次主存,不需要专门计算操作数地址。 缺点:1.形
2021-05-30 21:57:59 1318
原创 4-1-1指令格式
指令格式指令可以划分为操作码和地址码零地址指令一地址指令二、三地址指令四地址指令和三地址方式类似,最后一条地址会存放下一条跳转指令的地址按照指令长度分类按照操作码长度分类可以设计定长指令字结构和可变长操作码的指令按照操作类型分类1、数据传送类指令2、运算类指令3、程序控制类最终会改变PC寄存器当中的值4、输入输出类指令...
2021-05-30 18:25:35 153
原创 高等数学精讲02 第一章第二节 极限01
第二节 极限概要:极限是用来研究函数的工具,整个第一章的重点和难点。主要内容选择题和证明题:一、极限的概念二、极限的性质三、极限的存在准则极限的极端状态:四、无穷小五、无穷大量主要考题题型一、极限的概念性质&存在准则(选择题)题型二、求极限(方法性)题型三、确定极限式中的参数(核心:求极限)题型四、无穷小阶的比较极限的概念数列极限函数极限自变量趋向无穷的极限自变量趋向有限值的极限需要区分左右极限的情况极限的性质一、局部有界性二、保号性
2021-05-25 22:13:53 2639 1
原创 高等数学精讲05 第一章第三节 连续
题型三、已知极限,确定参数方法一、个个击破,使用提取无穷因子的方法除以0,极限为0,个个击破题型四、无穷小量阶的比较1、洛必达法则2、等价无穷小替换3、泰勒公式低阶无穷小+高阶无穷小=低阶无穷小多项式去定义一大堆系数,传统方法使用泰勒偶函数的零点展开式只可能是偶次项,所以n不可能是奇数第三节 连续考点概要一、连续的概念二、间断点及其分类三、连续函数的性质常见考题题型一、讨论连续性及间断点的类型讨论间断点对函数做变形,一定要考虑到.
2021-05-25 20:50:12 1280
原创 高等数学精讲01 第一章第一节 函数
第一章 函数,极限,连续概要:函数:高等数学研究的主要对象极限(重点难点):用来研究函数的工具,重要概念都是极限用来定义的,连续,导数,定积分连续性:研究的第一个基本形态第一节 函数主要内容:函数的概念以及一些常见的函数函数的四大基本性态考卷考题:题型一:复合函数题型二:函数性态(每年必考,分值很高)一、函数概念以及常见函数1.函数的概念不提值域是因为,得到定义域和对应法则就可以去确定值域2.复合函数复合函数的关键是看外层函数的定义域和内层函数的值域是否有交集3.
2021-05-13 10:41:40 4151 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人