【算法模板】数论:杨辉三角求组合数

算法概念

杨辉三角,又称帕斯卡三角形(Pascal’s Triangle),是数学上的一个著名排列组合形式,它在代数、组合数学、概率论等多个数学领域都有广泛的应用。这个三角形以法国数学家布莱士·帕斯卡的名字命名,但实际上它在帕斯卡之前就已被中国的数学家所知,并在中国古代数学著作《张丘建算经》和《缉古算经》中都有记载,因此也被称为“杨辉三角”,以纪念中国南宋时期的数学家杨辉。

杨辉三角的构造规则很简单:

  1. 每行数字左右对称,由1开始逐渐变大。
  2. 每个数是它左上方和右上方的两个数之和(即“肩膀”上的两个数之和)。
  3. 每行第一个数和最后一个数都是1。

以下是杨辉三角的前几行:

    1
   1 1
  1 2 1
 1 3 3 1
1 4 6 4 1

杨辉三角在数学上有许多的性质和应用,例如:

  • 它与二项式系数(组合数)紧密相关。在杨辉三角中,第n行的第k个数恰好是(n, k)的二项式系数,即C(n, k) = n! / (k!(n-k)!),其中n!表示n的阶乘。
  • 它与幂的展开式有关。例如,(a+b)^n的展开式中的各项系数可以直接从杨辉三角的第n行中读取。
  • 它还涉及到许多数学定理和公式的证明,如范德蒙德恒等式等。

算法步骤

  1. 初始化:
    • 创建一个二维数组 C[n+1][k+1](注意数组大小要比 nk 各大 1),用于存储组合数。
    • 将所有 C[i][0] 初始化为 1(基于基础情况)。
  2. 填充数组:
    • 使用两个嵌套的循环遍历数组 C 的元素(除了已经初始化的边界)。外层循环变量 i 从 1 到 n,内层循环变量 j 从 1 到 i(因为 C[i][j] 只依赖于 C[i-1][...] 的值)。
    • 对于每个 C[i][j],根据递推关系 C[i][j] = C[i-1][j-1] + C[i-1][j] 进行计算。

算法模板

vector<vector<int>> combination(int n,int mod=1e9+7){
    vector<vector<int>> C(n+1,vector<int>(n+1));
    for(int i=0;i<=n;i++)
        for(int j=0;j<=i;j++)
            if(j==0)C[i][j]=1;
            else C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
    return C;
}
vector<int> combination(int n) {
    vector<int> row(n + 1, 1);
    for (int i = 1; i <= n; ++i)
        for (int j = i - 1; j > 0; --j)
            row[j] = row[j] + row[j - 1];
    return row;
}

模板题

洛谷:计算系数

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int MOD=10007;

int modPow(int n, int k, int mod=MOD) {
    int r = 1;
    for (; k; k >>= 1, n = n * n % mod)
        if (k & 1) r = r * n % mod;
    return r;
}

vector<int> combination(int n,int mod=MOD) {
    vector<int> row(n + 1, 1);
    for (int i = 1; i <= n; ++i)
        for (int j = i - 1; j > 0; --j)
            row[j] = (row[j] + row[j - 1])%mod;
    return row;
}

signed main() {
    int a, b, k, n, m;
    cin >> a >> b >> k >> n >> m;
    vector<int> C=combination(k);
    cout<<C[n]*modPow(a,n)%MOD*modPow(b,m)%MOD<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值