图片重建3d 3d重建

目录

mast3r

InstantSplat

unik3d

在线演示demo:

环境搭建:


mast3r


https://github.com/naver/mast3r

InstantSplat


https://github.com/NVlabs/InstantSplat

unik3d


搞定任意相机的3D重建 ,去畸变:

https://github.com/lpiccinelli-eth/unik3d

在线演示demo:

https://huggingface.co/spaces/lpiccinelli/UniK3D-demo

环境搭建:

cuda版本有要求

export VENV_DIR=<YOUR-VENVS-DIR>
export NAME=unik3d

python -m venv $VENV_DIR/$NAME
source $VENV_DIR/$NAME/bin/activate

# Install UniK3D and dependencies (more recent CUDAs work fine)
pip install -e . --extra-index-url https://download.pytorch.org/whl/cu121

# Install Pillow-SIMD (Optional)
pip uninstall pillow
CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

# Install KNN (for evaluation only)
cd ./unik3d/ops/knn;bash compile.sh;cd ../../../
If you use conda, you should change the following:

python -m venv $VENV_DIR/$NAME -> conda create -n $NAME python=3.11
source $VENV_DIR/$NAME/bin/activate -> conda activate $NAME

推理代码:

from unik3d.models import UniK3D

model = UniK3D.from_pretrained("lpiccinelli/unik3d-vitl") # vitl for ViT-L backbone

import numpy as np
from PIL import Image

# Move to CUDA, if any
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# Load the RGB image and the normalization will be taken care of by the model
image_path = "./assets/demo/scannet.jpg"
rgb = torch.from_numpy(np.array(Image.open(image_path))).permute(2, 0, 1) # C, H, W

predictions = model.infer(rgb)

# Point Cloud in Camera Coordinate
xyz = predictions["points"]

# Unprojected rays
rays = predictions["rays"]

# Metric Depth Estimation
depth = predictions["depth"]


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值