【算法模板】数论:费马小定理求组合数

概念

费马小定理(Fermat’s Little Theorem)是数论中的一个重要定理,内容如下:

  • 如果 p 是一个质数,并且 a 是一个整数且 a 不是 p 的倍数,那么有: a^(p−1)≡1 (mod p)
  • 进一步地,可以得到: a^(p−2)≡a−1 (mod p)

费马小定理可以用来计算模逆元,即给定一个整数 a,可以通过计算 a^(p−2)mod p 来得到 a 在模 p 下的逆元(前提是 p 是质数)。

算法步骤

预处理阶乘:计算并存储所有从 0 到 n 的阶乘值 fact[i]=i!modp。

预处理阶乘的模逆元:使用费马小定理计算并存储所有从 0 到 n 的阶乘逆元 invFact[i]=(i!)−1mod  p。

计算组合数

  • 使用预处理好的阶乘值和阶乘逆元,计算组合数 C(n,k)mod  = fact[n] × invFact[k] × invFact[n−k] mod  p

*时间复杂度:

  • 预处理阶乘和逆元:O(n)+O(nlogp)

  • 单次组合数计算:O(1)

算法模板

long long power(long long base, long long exp, long long mod = MOD){
    long long result = 1;
    base = base % mod;
    while (exp > 0){
        if (exp & 1)result = (result * base) % mod;
        exp = exp >> 1;
        base = (base * base) % mod;
    }
    return result;
}

struct Combinatorics {
    std::vector<long long> fact;    // 阶乘
    std::vector<long long> invFact; // 阶乘的逆元

    // 构造函数,初始化阶乘和逆元
    Combinatorics(int n, int mod = MOD) {
        fact = computeFactorials(n, mod);
        invFact = computeInverseFactorials(n, fact, mod);
    }

    // 计算阶乘
    std::vector<long long> computeFactorials(int n, int mod) {
        std::vector<long long> fact(n + 1);
        fact[0] = 1;
        for (int i = 1; i <= n; ++i)
            fact[i] = (fact[i - 1] * i) % mod;
        return fact;
    }

    // 计算逆元
    std::vector<long long> computeInverseFactorials(int n, const std::vector<long long>& fact, int mod) {
        std::vector<long long> invFact(n + 1);
        invFact[n] = power(fact[n], mod - 2, mod); // 费马小定理
        for (int i = n - 1; i >= 0; --i) 
            invFact[i] = (invFact[i + 1] * (i + 1)) % mod;
        return invFact;
    }

    // 计算组合数 C(n, k)
    long long binomialCoefficient(int n, int k, int mod = MOD) {
        if (k > n || k < 0) return 0;
        return (fact[n] * invFact[k] % mod * invFact[n - k] % mod) % mod;
    }
};

例题

P1313 NOIP2011 提高组 计算系数

给定一个多项式 (by+ax),请求出多项式展开后 x^n y^m 项的系数。

#include<bits/stdc++.h>
using namespace std;
const long long MOD = 10007;

long long power(long long base, long long exp, long long mod = MOD);
struct Combinatorics;

int main(){
    int a,b,k,n,m;
    cin>>a>>b>>k>>n>>m;
    Combinatorics com(k);
    cout<<com.binomialCoefficient(k,n)*power(a,n)%MOD*power(b,m)%MOD<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值