概念
费马小定理(Fermat’s Little Theorem)是数论中的一个重要定理,内容如下:
- 如果 p 是一个质数,并且 a 是一个整数且 a 不是 p 的倍数,那么有: a^(p−1)≡1 (mod p)
- 进一步地,可以得到: a^(p−2)≡a−1 (mod p)
费马小定理可以用来计算模逆元,即给定一个整数 a,可以通过计算 a^(p−2)mod p 来得到 a 在模 p 下的逆元(前提是 p 是质数)。
算法步骤
预处理阶乘:计算并存储所有从 0 到 n 的阶乘值 fact[i]=i!modp。
预处理阶乘的模逆元:使用费马小定理计算并存储所有从 0 到 n 的阶乘逆元 invFact[i]=(i!)−1mod p。
计算组合数:
- 使用预处理好的阶乘值和阶乘逆元,计算组合数 C(n,k)mod = fact[n] × invFact[k] × invFact[n−k] mod p
*时间复杂度:
-
预处理阶乘和逆元:O(n)+O(nlogp)
-
单次组合数计算:O(1)
算法模板
long long power(long long base, long long exp, long long mod = MOD){
long long result = 1;
base = base % mod;
while (exp > 0){
if (exp & 1)result = (result * base) % mod;
exp = exp >> 1;
base = (base * base) % mod;
}
return result;
}
struct Combinatorics {
std::vector<long long> fact; // 阶乘
std::vector<long long> invFact; // 阶乘的逆元
// 构造函数,初始化阶乘和逆元
Combinatorics(int n, int mod = MOD) {
fact = computeFactorials(n, mod);
invFact = computeInverseFactorials(n, fact, mod);
}
// 计算阶乘
std::vector<long long> computeFactorials(int n, int mod) {
std::vector<long long> fact(n + 1);
fact[0] = 1;
for (int i = 1; i <= n; ++i)
fact[i] = (fact[i - 1] * i) % mod;
return fact;
}
// 计算逆元
std::vector<long long> computeInverseFactorials(int n, const std::vector<long long>& fact, int mod) {
std::vector<long long> invFact(n + 1);
invFact[n] = power(fact[n], mod - 2, mod); // 费马小定理
for (int i = n - 1; i >= 0; --i)
invFact[i] = (invFact[i + 1] * (i + 1)) % mod;
return invFact;
}
// 计算组合数 C(n, k)
long long binomialCoefficient(int n, int k, int mod = MOD) {
if (k > n || k < 0) return 0;
return (fact[n] * invFact[k] % mod * invFact[n - k] % mod) % mod;
}
};
例题
给定一个多项式 (by+ax),请求出多项式展开后 x^n y^m 项的系数。
#include<bits/stdc++.h>
using namespace std;
const long long MOD = 10007;
long long power(long long base, long long exp, long long mod = MOD);
struct Combinatorics;
int main(){
int a,b,k,n,m;
cin>>a>>b>>k>>n>>m;
Combinatorics com(k);
cout<<com.binomialCoefficient(k,n)*power(a,n)%MOD*power(b,m)%MOD<<endl;
return 0;
}