定理:
∀ ( a , p ) = 1 , p 为 素 数 , 则 a p − 1 ≡ 1 ( m o d p ) {\forall}(a,p) = 1, p\,为素数,则\,a^{p-1}\equiv1(mod p) ∀(a,p)=1,p为素数,则ap−1≡1(modp)
证明1:
==完全剩余系:==从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。完全剩余系常用于数论中存在性证明。
举例:一个数除以4的余数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系。可以看出0和4,1和5,2和-2,3和11模4同余,这4组数分别属于4个剩余类。
可以得出 mod p 的完全剩余系(当前和下面的证明过程中,都忽视掉0)为{1,2,3,p-1}
然后我们将它都 * a 得到 {a,2a,(p- 1)a}
这时候我们需要用反证法,证明第二个括号中的数mod p的结果各不相同。
若
a
i
=
a
j
(
m
o
d
p
)
,
1
≤
i
,
j
≤
p
−
1
⇒
a
(
i
−
j
)
≡
0
(
m
o
d
p
)
⇒
p
∣
a
(
i
−
j
)
∵
1
≤
i
,
j
≤
p
−
1
⇒
p
∤
(
i
−
j
)
∵
(
a
,
p
)
=
1
⇒
p
∤
a
若ai=aj(mod\;p),\;1\le\,i,j\;\le p-1\\ \Rightarrow a(i-j)\equiv0(mod\;p)\Rightarrow p|a(i - j)\\ \because 1\le\,i,j\;\le p-1 \Rightarrow p \not\mid(i - j) \\ \because (a,p)=1 \Rightarrow p \not\mid a\\
若ai=aj(modp),1≤i,j≤p−1⇒a(i−j)≡0(modp)⇒p∣a(i−j)∵1≤i,j≤p−1⇒p∣(i−j)∵(a,p)=1⇒p∣a
所以假设不成立,所以可以得出第二个括号中的数mod p的结果各不相同,然后根据完全剩余系的定义,可以得出括号二和括号一 一样都是mod p 的完全剩余系。所以可以得出
(
p
−
1
)
!
≡
a
p
−
1
(
p
−
1
)
!
(
m
o
d
p
)
∵
p
是
素
数
,
所
以
(
(
p
−
1
)
!
,
p
)
=
1
∴
a
p
−
1
≡
1
(
m
o
d
p
)
(p-1)!\equiv a^{p-1}(p-1)!\;(mod\;p)\\ \because p是素数,所以(\;(p-1)!\;,p) = 1\\ \therefore a^{p-1}\equiv1(mod\;p)
(p−1)!≡ap−1(p−1)!(modp)∵p是素数,所以((p−1)!,p)=1∴ap−1≡1(modp)
证明2:
补充:里面那个(pk)是组合数的意思,就是从p个元素里面,不管顺序,不重复选出k个
p
为
素
数
,
且
(
a
,
p
)
=
1
,
a
p
−
1
≡
1
(
m
o
d
p
)
⇔
a
p
≡
a
(
m
o
d
p
)
二
项
式
展
开
:
a
p
=
(
1
+
a
−
1
)
p
=
1
+
p
(
a
−
1
)
+
(
p
k
)
(
a
−
k
)
k
+
(
a
−
1
)
p
因
为
二
项
式
的
系
数
都
是
自
然
数
,
即
(
p
k
)
=
p
(
p
−
1
)
.
.
.
(
p
−
k
+
1
)
k
!
∈
N
∴
k
!
∣
p
(
p
−
1
)
.
.
.
(
p
−
k
+
1
)
又
∵
k
<
p
,
并
且
p
是
素
数
⇒
(
k
!
,
p
)
=
1
⇒
k
!
∣
(
p
−
1
)
.
.
.
(
p
−
k
+
1
)
推
到
这
里
可
以
得
出
除
了
第
一
个
和
最
后
一
个
二
项
式
的
展
开
式
外
,
其
他
都
可
以
被
p
整
除
,
因
为
他
们
的
二
项
式
系
数
都
有
一
个
p
∴
a
p
≡
1
+
(
a
−
1
)
p
(
m
o
d
p
)
同
理
a
p
=
(
1
+
a
−
1
)
p
,
也
可
以
=
(
2
+
a
−
2
)
p
,
可
以
=
(
a
+
a
−
a
)
p
a
p
≡
2
+
(
a
−
2
)
p
(
m
o
d
p
)
.
.
.
.
.
.
.
a
p
≡
a
(
m
o
d
p
)
∴
p
∣
a
p
−
1
⇒
p
∣
a
(
a
p
−
1
−
1
)
∵
(
a
,
p
)
=
1
⇒
p
∣
a
p
−
1
−
1
⇒
a
p
−
1
≡
1
(
m
o
d
p
)
p为素数,且(a,p)=1,a^{p-1}\equiv1(mod\;p)\Leftrightarrow a^p\equiv a(mod\;p)\\ 二项式展开:a^p = (1 + a-1)^p=1+p(a-1)+\binom{p}{k}(a-k)^k+(a-1)^{p}\\ 因为二项式的系数都是自然数,即\binom{p}{k}=\frac{p(p-1)...(p-k + 1)}{k!}\in N\\ \therefore k!\mid p(p-1)...(p-k+1)\\ 又\because k<p,并且p是素数\Rightarrow(k!,p) = 1\Rightarrow k!\mid (p-1)...(p-k+1)\\ 推到这里可以得出除了第一个和最后一个二项式的展开式外,其他都可以被p整除,因为他们的二项式系数都有一个p\\ \therefore a^p \equiv1+(a-1)^p(mod \;p)\\ 同理a^p = (1 + a-1)^p,也可以=(2+a-2)^p,可以=(a + a - a)^p\\ a^p\equiv2+(a-2)^p(mod\;p)\\ .......\\ a^p \equiv a(mod\;p)\\ \therefore p\mid a^p-1\Rightarrow p \mid a(a^{p-1}-1)\\ \because (a,p) = 1\Rightarrow p \mid a^{p-1}-1\Rightarrow a^{p-1}\equiv1(mod\;p)
p为素数,且(a,p)=1,ap−1≡1(modp)⇔ap≡a(modp)二项式展开:ap=(1+a−1)p=1+p(a−1)+(kp)(a−k)k+(a−1)p因为二项式的系数都是自然数,即(kp)=k!p(p−1)...(p−k+1)∈N∴k!∣p(p−1)...(p−k+1)又∵k<p,并且p是素数⇒(k!,p)=1⇒k!∣(p−1)...(p−k+1)推到这里可以得出除了第一个和最后一个二项式的展开式外,其他都可以被p整除,因为他们的二项式系数都有一个p∴ap≡1+(a−1)p(modp)同理ap=(1+a−1)p,也可以=(2+a−2)p,可以=(a+a−a)pap≡2+(a−2)p(modp).......ap≡a(modp)∴p∣ap−1⇒p∣a(ap−1−1)∵(a,p)=1⇒p∣ap−1−1⇒ap−1≡1(modp)
参考资料:[最美数学系列-什么是费马小定理以及如何证明它?_哔哩哔哩_bilibili](