费马小定理证明

定理:

∀ ( a , p ) = 1 , p   为 素 数 , 则   a p − 1 ≡ 1 ( m o d p ) {\forall}(a,p) = 1, p\,为素数,则\,a^{p-1}\equiv1(mod p) (a,p)=1,pap11(modp)

证明1:

==完全剩余系:==从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。完全剩余系常用于数论中存在性证明。

举例:一个数除以4的余数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系。可以看出0和4,1和5,2和-2,3和11模4同余,这4组数分别属于4个剩余类。

可以得出 mod p 的完全剩余系(当前和下面的证明过程中,都忽视掉0)为{1,2,3,p-1}

然后我们将它都 * a 得到 {a,2a,(p- 1)a}

这时候我们需要用反证法,证明第二个括号中的数mod p的结果各不相同。
若 a i = a j ( m o d    p ) ,    1 ≤   i , j    ≤ p − 1 ⇒ a ( i − j ) ≡ 0 ( m o d    p ) ⇒ p ∣ a ( i − j ) ∵ 1 ≤   i , j    ≤ p − 1 ⇒ p ∤ ( i − j ) ∵ ( a , p ) = 1 ⇒ p ∤ a 若ai=aj(mod\;p),\;1\le\,i,j\;\le p-1\\ \Rightarrow a(i-j)\equiv0(mod\;p)\Rightarrow p|a(i - j)\\ \because 1\le\,i,j\;\le p-1 \Rightarrow p \not\mid(i - j) \\ \because (a,p)=1 \Rightarrow p \not\mid a\\ ai=aj(modp),1i,jp1a(ij)0(modp)pa(ij)1i,jp1p(ij)(a,p)=1pa
所以假设不成立,所以可以得出第二个括号中的数mod p的结果各不相同,然后根据完全剩余系的定义,可以得出括号二和括号一 一样都是mod p 的完全剩余系。所以可以得出
( p − 1 ) ! ≡ a p − 1 ( p − 1 ) !    ( m o d    p ) ∵ p 是 素 数 , 所 以 (    ( p − 1 ) !    , p ) = 1 ∴ a p − 1 ≡ 1 ( m o d    p ) (p-1)!\equiv a^{p-1}(p-1)!\;(mod\;p)\\ \because p是素数,所以(\;(p-1)!\;,p) = 1\\ \therefore a^{p-1}\equiv1(mod\;p) (p1)!ap1(p1)!(modp)p((p1)!,p)=1ap11(modp)

证明2:

补充:里面那个(pk)是组合数的意思,就是从p个元素里面,不管顺序,不重复选出k个
p 为 素 数 , 且 ( a , p ) = 1 , a p − 1 ≡ 1 ( m o d    p ) ⇔ a p ≡ a ( m o d    p ) 二 项 式 展 开 : a p = ( 1 + a − 1 ) p = 1 + p ( a − 1 ) + ( p k ) ( a − k ) k + ( a − 1 ) p 因 为 二 项 式 的 系 数 都 是 自 然 数 , 即 ( p k ) = p ( p − 1 ) . . . ( p − k + 1 ) k ! ∈ N ∴ k ! ∣ p ( p − 1 ) . . . ( p − k + 1 ) 又 ∵ k < p , 并 且 p 是 素 数 ⇒ ( k ! , p ) = 1 ⇒ k ! ∣ ( p − 1 ) . . . ( p − k + 1 ) 推 到 这 里 可 以 得 出 除 了 第 一 个 和 最 后 一 个 二 项 式 的 展 开 式 外 , 其 他 都 可 以 被 p 整 除 , 因 为 他 们 的 二 项 式 系 数 都 有 一 个 p ∴ a p ≡ 1 + ( a − 1 ) p ( m o d    p ) 同 理 a p = ( 1 + a − 1 ) p , 也 可 以 = ( 2 + a − 2 ) p , 可 以 = ( a + a − a ) p a p ≡ 2 + ( a − 2 ) p ( m o d    p ) . . . . . . . a p ≡ a ( m o d    p ) ∴ p ∣ a p − 1 ⇒ p ∣ a ( a p − 1 − 1 ) ∵ ( a , p ) = 1 ⇒ p ∣ a p − 1 − 1 ⇒ a p − 1 ≡ 1 ( m o d    p ) p为素数,且(a,p)=1,a^{p-1}\equiv1(mod\;p)\Leftrightarrow a^p\equiv a(mod\;p)\\ 二项式展开:a^p = (1 + a-1)^p=1+p(a-1)+\binom{p}{k}(a-k)^k+(a-1)^{p}\\ 因为二项式的系数都是自然数,即\binom{p}{k}=\frac{p(p-1)...(p-k + 1)}{k!}\in N\\ \therefore k!\mid p(p-1)...(p-k+1)\\ 又\because k<p,并且p是素数\Rightarrow(k!,p) = 1\Rightarrow k!\mid (p-1)...(p-k+1)\\ 推到这里可以得出除了第一个和最后一个二项式的展开式外,其他都可以被p整除,因为他们的二项式系数都有一个p\\ \therefore a^p \equiv1+(a-1)^p(mod \;p)\\ 同理a^p = (1 + a-1)^p,也可以=(2+a-2)^p,可以=(a + a - a)^p\\ a^p\equiv2+(a-2)^p(mod\;p)\\ .......\\ a^p \equiv a(mod\;p)\\ \therefore p\mid a^p-1\Rightarrow p \mid a(a^{p-1}-1)\\ \because (a,p) = 1\Rightarrow p \mid a^{p-1}-1\Rightarrow a^{p-1}\equiv1(mod\;p) p(a,p)=1,ap11(modp)apa(modp):ap=(1+a1)p=1+p(a1)+(kp)(ak)k+(a1)p,(kp)=k!p(p1)...(pk+1)Nk!p(p1)...(pk+1)k<p,p(k!,p)=1k!(p1)...(pk+1)ppap1+(a1)p(modp)ap=(1+a1)p,=(2+a2)p,=(a+aa)pap2+(a2)p(modp).......apa(modp)pap1pa(ap11)(a,p)=1pap11ap11(modp)

参考资料:[最美数学系列-什么是费马小定理以及如何证明它?_哔哩哔哩_bilibili](

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值