- 博客(7)
- 收藏
- 关注
原创 算法设计与分析第二章作业
如果基准位置小于 k,这意味着第 k 小数在基准元素右边的子数组中,因此递归处理右边的部分,同时调整 k 值为 k - 基准元素 - 1(因为我们要在右侧部分继续找第 k - 基准元素 - 1 小的数)。最坏情况:每次分区选择的基准元素恰好是数组中的最大或最小值,导致数组只能分出一个元素,这样递归深度为 n,最坏情况下时间复杂度为 O(n^2)。二、通过一轮遍历,将数组二分,一部分是所有小于基准元素的数,另一部分是所有大于或等于基准元素的数。此外,还要把基准元素放在它排序后应有的位置。
2024-10-20 17:31:52 176
原创 算法与程序设计——数学之美感悟&代码规范
看问题要看全面,适当的发散,与不同领域的人沟通能够让我们了解到认知以外的知识,这更有助于我们解决手上棘手的问题。1. 命名约定:大公司通常会有明确的命名约定,比如使用大驼峰命名法(PascalCase)为类名和接口名命名,小驼峰命名法(camelCase)用于方法名和变量名,常量名全大写,使用下划线分隔。本章节从中文分词方法的演变开始说起,然后又谈到了一些工程上的细节问题,最后他小结道:“经过几十年的发展和完善,今天基本上可以看作是一个已经解决的问题。首先我们来浅谈一下吴教授在第四章提到的中文分词。
2024-09-13 22:01:12 364
原创 Pytorch读书笔记(5)网络结构可视化
可视化后的标准结果如下,我还没有跑完所以先贴个图狗头保命,我同学说貌似跑出来的结果不太一样…本次将使用手写字体的数据进行分类然后整一个可视化,用的是HiddenLayer库。有点小问题是,下载速度有点慢,然后貌似第一个网站访问不了。《PyTorch深度学习入门与实战》跑完再补上结果doge。
2024-06-09 00:26:12 214 1
原创 PyTorch 读书笔记(3)PyTorch深度神经网络及训练一
上一次的笔记中,我们分享了有关于自动微分、torch.nn以及数据预处理的内容,那么这一次的笔记,我将从深度神经网络的介绍以及训练进行“科普性”介绍。
2024-05-25 22:59:32 711
原创 Pytorch读书笔记(2)自动微分&nn&数据预处理
自动微分用于计算神经网络中参数的梯度,以便进行优化。自动微分一般是用反向传播算法,它会沿着神经网络图反向路径传播梯度,自动推导出损失函数对于每个参数的导数,找到损失值最小的参数取值。这种方法使得深度学习模型的开发和调试过程大大地得到了简化。nn就是neural network的缩写,主要用于构建神经网络模型比如前馈神经网络、卷积神经网络、循环神经网络等,适用于图像分类、目标检测、语义分割、文本分类、语言模型等等。
2024-05-19 09:23:04 655
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人