Pytorch读书笔记(5)网络结构可视化
本次将使用手写字体的数据进行分类然后整一个可视化,用的是HiddenLayer库。
import hiddenlayer as hl
import time
import torch
import torch.nn as nn
import torchvision
import torchvision.utils as vutils
train_data = torchvision.datasets.MNIST(
root = "./data/MNIST",
train = True,
transform = torchvision.transforms.ToTensor(),
download = True #如果已经下载就改为False!!!!!!(很重要)
)
# 定义一个数据加载器
train_loader = Data.DataLoader(
dataset = train_data,
batch_size = 128,
shuffle = True,
num_workers = 2,
)
# 搭建一个卷积神经网络
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet,self).__init__()
# 定义第一个卷积层
self.convl=nn.Sequential(
nn.Conv2d(
# 输入的 feature map
in_channels = 1,
#输出的feature map
out_channels = 16,
# 卷积核尺寸
kernel_size = 3,
# 卷积核步长
stride = 1,
# 进行填充
padding = 1,
),
# 激活函数
nn.ReLU(),
nn.AvgPool2d(
# 平均值池化层,使用 2x2
kernel_size = 2,
# 池化步长为2
stride = 2
)
)
# 定义第二个卷积层
self.conv2 = nn.Sequential(
nn.Conv2d(16,32,3,1,1),
# 激活函数
nn.ReLU(),
# 最大值池化
nn.MaxPool2d(2,2)
)
# 定义全连接层
self.fc = nn.Sequential(
nn.Linear(
#输入特征
in_features = 32 * 7 * 7,
# 输出特征数
out_features =128,
),
nn.ReLU(),
nn.Linear(128,64),
nn.ReLU()
)
# 最后的分类层
self.out = nn.Linear(64,10)
# 定义网络的向前传播路径:
def forward(self, x):
x=self.convl(x)
x= self.conv2(x)
#展平多维的卷积图层
x = x.view(x.size(0),-1)
x = self.fc(x)
output = self,out(x)
return output
# 初始化Myconvnet
MyConvent = ConvNet()
print(MyConvent)
# 定义优化器
optimizer = torch.optim.Adam(MyConvent.parameters(),lr=0.0003)
# 定义损失函数
loss_func = nn.CrossEntropyLoss()
# 记录训练过程的指标
hst1 = hl.History()
# 使用canvas进行可视化
canvas1 = hl.Canvas()
# 每经过100次迭代输出损失值
print_step = 100
for echo in range(5):
#对训练数据的加载器进行迭代计算
for step,(b_x,b_y)in enumerate(train_loader):
# 计算每个batch的损失
# CNN在训练batch上的输出
output = MyConvnet(b_x)
# 交叉熵损失函数
loss = loss_func(output,b_y)
# 每个迭代步的梯度初始化为0
optimizer.zero_grad()
# 损失后的后巷传播,计算梯度
loss.backward()
#使用梯度进行优化
optimizer.step()
# 计算迭代次数以及没经过一个print_step此迭代后的输出
if step % print_step == 0:
output = MyConvnet(test_data_x)
pre_lab = torch.max(output,1)
acc = accuracy_score(test_data_y,pre_lab)
history.log((epoch,step),
train_lkoss=loss,test_acc=acc,hidden_weight=MyConvnet.fc[2].weight)
with canvas1:
canvas1.draw_plot(hst1["train_loss"])
canvas1.draw_plot(hst["tset_acc"])
canvas1.draw_image(hst1["hidden_weight"])
有点小问题是,下载速度有点慢,然后貌似第一个网站访问不了
可视化后的标准结果如下,我还没有跑完所以先贴个图狗头保命,我同学说貌似跑出来的结果不太一样…
跑完再补上结果doge
参考资料:
《PyTorch深度学习入门与实战》