Pytorch读书笔记(5)网络结构可视化

Pytorch读书笔记(5)网络结构可视化

本次将使用手写字体的数据进行分类然后整一个可视化,用的是HiddenLayer库。

import hiddenlayer as hl
import time
import torch
import torch.nn as nn
import torchvision
import torchvision.utils as vutils

train_data = torchvision.datasets.MNIST(
    root = "./data/MNIST",
    train = True,
    transform = torchvision.transforms.ToTensor(),
    download = True #如果已经下载就改为False!!!!!!(很重要)
)

# 定义一个数据加载器
train_loader = Data.DataLoader(
 dataset = train_data,
    batch_size = 128,
    shuffle = True,
    num_workers = 2,
)

# 搭建一个卷积神经网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet,self).__init__()
    # 定义第一个卷积层
        self.convl=nn.Sequential(
            nn.Conv2d(
                # 输入的 feature map
                in_channels = 1,
                #输出的feature map
                out_channels = 16, 
                # 卷积核尺寸
                kernel_size = 3,
                # 卷积核步长
                stride = 1,
                # 进行填充
                padding = 1,
                    ),
        # 激活函数
            nn.ReLU(),
            nn.AvgPool2d(
            # 平均值池化层,使用 2x2
                kernel_size = 2,
            # 池化步长为2
                stride = 2
                        )
    )
    # 定义第二个卷积层
        self.conv2 = nn.Sequential(
            nn.Conv2d(16,32,3,1,1),
             # 激活函数
            nn.ReLU(),
            # 最大值池化
            nn.MaxPool2d(2,2)
    )
    # 定义全连接层
        self.fc = nn.Sequential(
            nn.Linear(
                #输入特征
                in_features = 32 * 7 * 7,
                # 输出特征数
                out_features =128,
            ),
            nn.ReLU(),
            nn.Linear(128,64),
            nn.ReLU()
    )
            # 最后的分类层
        self.out = nn.Linear(64,10)
    # 定义网络的向前传播路径:
    def forward(self, x):
        x=self.convl(x)
        x= self.conv2(x)
        #展平多维的卷积图层
        x = x.view(x.size(0),-1)
        x = self.fc(x)
        output = self,out(x)
        return output



# 初始化Myconvnet
MyConvent = ConvNet()
print(MyConvent)
# 定义优化器
optimizer = torch.optim.Adam(MyConvent.parameters(),lr=0.0003)
# 定义损失函数
loss_func = nn.CrossEntropyLoss()
# 记录训练过程的指标
hst1 = hl.History()
# 使用canvas进行可视化
canvas1 = hl.Canvas()
# 每经过100次迭代输出损失值
print_step = 100
for echo in range(5):
    #对训练数据的加载器进行迭代计算
    for step,(b_x,b_y)in enumerate(train_loader):
        # 计算每个batch的损失
        # CNN在训练batch上的输出
        output = MyConvnet(b_x)
        # 交叉熵损失函数
        loss = loss_func(output,b_y)
        # 每个迭代步的梯度初始化为0
        optimizer.zero_grad()
        # 损失后的后巷传播,计算梯度
        loss.backward()
        #使用梯度进行优化
        optimizer.step()
        # 计算迭代次数以及没经过一个print_step此迭代后的输出
if step % print_step == 0:
    output = MyConvnet(test_data_x)
    pre_lab = torch.max(output,1)
    acc = accuracy_score(test_data_y,pre_lab)
    history.log((epoch,step),
               train_lkoss=loss,test_acc=acc,hidden_weight=MyConvnet.fc[2].weight)
    with canvas1:
        canvas1.draw_plot(hst1["train_loss"])
        canvas1.draw_plot(hst["tset_acc"])
        canvas1.draw_image(hst1["hidden_weight"])

有点小问题是,下载速度有点慢,然后貌似第一个网站访问不了在这里插入图片描述
可视化后的标准结果如下,我还没有跑完所以先贴个图狗头保命,我同学说貌似跑出来的结果不太一样…
在这里插入图片描述
跑完再补上结果doge
参考资料:
《PyTorch深度学习入门与实战》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值