一 整数在内存中的存储
1.1 源码 反码 补码
整数的2进制表⽰⽅法有三种,即 原码、反码和补码。
有符号的整数,三种表⽰⽅法均有符号位和数值位两部分,符号位都是⽤0表⽰“正”,⽤1表⽰“负”,最⾼位的⼀位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
负整数的三种表⽰⽅法各不相同。
原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
例如:
int a = 10;
00000000 00000000 00000000 00001010 ——原码
00000000 00000000 00000000 00001010 ——反码
00000000 00000000 00000000 00001010 ——补码int a = -10;
10000000 00000000 00000000 00001010 ——原码
11111111 11111111 11111111 11110101 ——反码
11111111 11111111 11111111 11111110 ——补码
在计算机系统中,对于整形来说,数据存在内存中存放的是补码。
原因在于,使用补码,可以将符号位和数值位统一处理。同时,因为CPU只有加法器,所以加法和减法也可以统一处理。补码转换为原码,与原码转换为补码的方式是想通的,不需要额外的硬件电路。
二 大小端字节序
2.1 大小端的概念
当数据只在一个字节内存存储时,我们书写习惯一般是从高位到低位,但是,当超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念:
⼤端(存储)模式:
是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的高位字节内容,保存在内存的低地址处。
⼩端(存储)模式:
是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存在内存的⾼地址处。
例如:
存储的数据为:0x11223344
三 浮点数在内存中的存储
V = (−1) ∗ S M ∗ 2E
• (−1)S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
• M 表⽰有效数字,M是⼤于等于1,⼩于2的
• 2
E 表⽰指数位
⼗进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
3.1 浮点数存的过程
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0\~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,但E为无符号整数不存在符号位,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,使其变为一个正整数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^-1的E是-1,所以保存成32位浮点数时,必须保存成-1+127=126,即01111110注意这个地方为存储值而非真实值.
3.2 浮点数取的过程
E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位00000000000000000000000
则其⼆进制表⽰形式为:
0 01111110 00000000000000000000000
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。
0 00000000 00100000000000000000000
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s);
0 11111111 00010000000000000000000
注意:
浮点数根本不是一个准确的数字,浮点数在内存中存储并不想我们想的那样是完整存储的,在十进制转化成为二进制,是有可能有精度损失的。注意这里的损失,不是一味的减少了,还有可能增多。浮点数本身存储的时候,在计算不尽的时候,会“四舍五入”或者其他策略。
祝大家生活愉快。