DFS算法之前已经说明过概念和简单的阐述了自己的看法,这里就简单的说明一下,用俗语说就是“不见黄河不死心,不撞南墙不回头”。
下面用DFS算法解决两个问题,进一步理解DFS算法。
问题1:https://www.luogu.com.cn/problem/P1596
由于近期的降雨,雨水汇集在农民约翰的田地不同的地方。我们N×M(1≤N≤100,1≤M≤100) 的网格图表示。每个网格中有水(
W
) 或是旱地(.
)。一个网格与其周围的八个网格相连,而一组相连的网格视为一个水坑。约翰想弄清楚他的田地已经形成了多少水坑。给出约翰田地的示意图,确定当中有多少水坑。输入第 11 行:两个空格隔开的整数:N 和 M。
第 2行到第 N+1 行:每行 M 个字符,每个字符是
W
或.
它们表示网格图中的一排。字符之间没有空格。输出一行,表示水坑的数量。
输入输出样例
输入
10 12 W........WW. .WWW.....WWW ....WW...WW. .........WW. .........W.. ..W......W.. .W.W.....WW. W.W.W.....W. .W.W......W. ..W.......W.输出
3
思路:题目说了许多,总的概括就是,用网格图表示一块田,田中的水地为‘W’,旱地为‘.’,水地与水地连接为水坑(周围八个方位连接都算),最后找出所有的水坑数。
信息:‘W’为水地,‘.’为旱地;要考虑8个方位;
代码:
#include<stdio.h>
#include<stdbool.h>
#define M 110
int n,m;
int res=0; //水坑数
bool st[M][M]; //记录是否已经遍历过
char g[M][M]; //二维数组形成网格图
int dx[8]={-1,-1,-1,0,0,1,1,1}; //8个方位
int dy[8]={-1,0,1,1,-1,1,0,-1};
void dfs(int x,int y){
for(int i=0;i<8;i++){
int a=x+dx[i],b=y+dy[i];
if(a<0||a>=n||b<0||b>=m)continue; //超出边界,结束本次循环
if(g[a][b]!='W')continue; //不是‘W’结束本次循环
if(st[a][b])continue; //搜索过的结束本次循环
st[a][b]=true; //搜索过的标记为true
dfs(a,b); //继续搜寻下一个水地‘W’
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++){
scanf("%s",g[i]);
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(g[i][j]=='W'&&!st[i][j]){
dfs(i,j); //从第一个水地且没有搜索过的开始
res++; //第一级dfs调用结束后,水坑数+1
}
}
}
printf("%d\n",res);
return 0;
}
问题2:P1605 迷宫 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题目描述
给定一个 N×M 方格的迷宫,迷宫里有 T 处障碍,障碍处不可通过。
在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。
给定起点坐标和终点坐标,每个方格最多经过一次,问有多少种从起点坐标到终点坐标的方案。
输入格式
第一行为三个正整数 N,M,T,分别表示迷宫的长宽和障碍总数。
第二行为四个正整数 SX,SY,FX,FY,SX,SY代表起点坐标,FX,FY 代表终点坐标。
接下来 T 行,每行两个正整数,表示障碍点的坐标。
输出格式
输出从起点坐标到终点坐标的方案总数。
输入输出样例
输入
2 2 1 1 1 2 2 1 2输出
1
思路:题目说明是上下左右四个方位,所以只需定义向这四个方向移动的方式;用布尔类型的数组来记录格子是否走过;用int类型的数组map形成迷宫的地图,全部赋值为0,再把起点赋值为1(无论如何在本题中起点都是已经走过的点),有障碍的格子赋值为2;当搜索的格子满足其值为0且没有走过,就把该格子标记为走过并以这一点开始对下一格子进行搜索,找到终点后方案数要加一。
代码:
#include<stdio.h>
#include<stdbool.h>
#define M 15
int n,m,t;
int sx,sy,fx,fy,tx,ty;
int map[M][M];
bool st[M][M]; //记录格子是否走过
int res=0; //记录通过迷宫的路线方案总数
int dx[4]={-1,0,1,0}; //定义移动的方向
int dy[4]={0,1,0,-1};
void dfs(int x,int y){
if(x==fx&&y==fy){ //搜索到终点,便方案数+1
res++;
return ; //返回上一级
}
for(int i=0;i<4;i++){
int a=x+dx[i];
int b=y+dy[i];
if(a<1||a>n||b<1||b>m)continue; //超过迷宫边界,继续搜索可移动的格子
if(map[a][b]==0&&!st[a][b]){
st[a][b]=true;
dfs(a,b); //搜索下一位置
st[a][b]=false; //恢复已走过的格子,重新搜索
}
}
return ; //返回上一级
}
int main(){
scanf("%d%d%d",&n,&m,&t);
scanf("%d%d%d%d",&sx,&sy,&fx,&fy);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
map[i][j]=0; //利用二维数组设置迷宫
}
}
map[sx][sy]=1; //起始位置始终不变,赋值为1
while(t--){
scanf("%d%d",&tx,&ty);
map[tx][ty]=2; //酱油障碍的格子赋值为3
}
dfs(sx,sy); //从起始位置开始搜索路线
printf("%d\n",res);
return 0;
}
提出思考:
原题:P1162 填涂颜色 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
由数字 00 组成的方阵中,有一任意形状的由数字 11 构成的闭合圈。现要求把闭合圈内的所有空间都填写成 22。例如:6×66×6 的方阵(n=6),涂色前和涂色后的方阵如下:如果从某个 0 出发,只向上下左右 4 个方向移动且仅经过其他 00 的情况下,无法到达方阵的边界,就认为这个 00 在闭合圈内。闭合圈不一定是环形的,可以是任意形状,但保证闭合圈内的 00 是连通的(两两之间可以相互到达)。