机器学习——解释性AI(Explainable AI)

在这里插入图片描述

解释性AI(Explainable AI)——让机器学习模型更加透明与可信

随着人工智能(AI)和机器学习(ML)在多个领域的广泛应用,理解模型的决策过程变得尤为重要。解释性AI(Explainable AI, XAI) 的目标是为AI模型的决策提供透明、可解释的说明,从而提升模型的可信度、透明度,并有助于监管合规。这在高风险领域如医疗、金融、自动驾驶等尤为关键

什么是解释性AI?

解释性AI指的是一系列方法和技术,旨在帮助人们理解AI模型的输出如何生成。通过引入解释性层,AI系统不仅能提供预测结果,还能解释这些预测背后的逻辑。XAI有助于提高模型的透明度,确保AI决策的公正性和可靠性

解释性AI的常见方法

  1. SHAP(Shapley Additive Explanations)
    SHAP是基于博弈论的模型不可知(model-agnostic)方法,通过计算每个特征对预测结果的贡献,提供全局和局部的模型解释。SHAP的优势在于它能够为各种模型生成一致的解释,不论模型的复杂度

  2. LIME(Local Interpretable Model-agnostic Explanations)
    LIME通过局部生成一个简单的解释性模型来解释复杂模型的输出。LIME特别适合于深度学习等复杂模型,通过扰动输入数据并观测模型的预测变化,从而解释单一实例的决策过程

示例代码:使用SHAP解释随机森林模型

我们以经典的波士顿房价数据集为例,使用SHAP解释随机森林回归模型的预测结果。

import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import shap
from sklearn.datasets import load_boston

# 加载数据集
boston = load_boston()
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = boston.target

# 训练随机森林回归模型
model = RandomForestRegressor(n_estimators=100)
model
评论 128
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值