机器学习——量子机器学习(Quantum Machine Learning)
量子机器学习(Quantum Machine Learning)——未来的智能计算
量子机器学习(QML) 是将量子计算和机器学习相结合的新兴领域,它利用量子计算的特性来解决传统计算机难以处理的复杂问题。量子计算基于量子力学的原理,如叠加和纠缠,能以指数级速度处理数据,从而在某些任务上比经典计算更具优势。这使得QML有望在金融、制药、优化问题等领域带来革命性进展。
量子机器学习的核心概念
- 量子态与量子比特(Qubit):量子计算通过量子比特来处理数据,量子比特不仅可以处于0或1的状态,还可以处于两者的叠加态,使得量子计算能够并行处理大量计算任务。
- 量子核与特征映射:与经典机器学习中的核方法类似,量子核将数据映射到高维量子态空间。这种方法可以捕捉数据中的复杂相关性,从而提升模型的表现。
使用Qiskit进行量子机器学习——代码示例
让我们通过一个简单的代码示例,演示如何使用Qiskit创建量子特征映射,并应用量子核来解决机器学习问题。
from qiskit import Aer, QuantumCircuit
from qiskit_machine_learning.kernels import QuantumKernel
from qiskit.circuit import ParameterVector
# 创建2个量子比特的量子特征映射
feature_dimension = 2
x = ParameterVector('x', feature_dimension)
feature_map = QuantumCircuit(feature_dimension)
# 对每个量子比特应用Hadamard门和RZ旋转
for i in <