机械学系之-搜索_算法调参

# 网格搜索优化参数
from pandas import read_csv
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
filename = 'D:/0520代码+数据/第3、4次课:代码+数据/pima_data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
model = Ridge()
# 设置遍历参数
param_grid = {'alpha' : [1, 0.1, 0.01, 0.001, 0]}
grid = GridSearchCV(estimator=model, param_grid=param_grid)
grid.fit(X, Y)
# 结果
print('最高得分: %.3f' %grid.best_score_)
print('最优参数:  %s' %grid.best_estimator_.alpha)

# 随机优化参数
from pandas import read_csv
from sklearn.linear_model import Ridge
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform
filename = 'D:/0520代码+数据/第3、4次课:代码+数据/pima_data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
model = Ridge()
# 设置遍历参数
param_grid = {'alpha': uniform()}
grid = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100,random_state=7)
grid.fit(X, Y)
print('最高得分: %.3f' %grid.best_score_)
print('最优参数: %s' %grid.best_estimator_.alpha)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值