机械学系之-回归算法

该篇文章介绍了如何使用Python的sklearn库对PimaIndians糖尿病数据集进行线性回归(包括LogisticRegression,LinearDiscriminantAnalysis,KNN,CART,NaiveBayes和SVM)的模型选择和交叉验证,通过boxplot展示了不同算法的性能对比。
摘要由CSDN通过智能技术生成
# 线性回归
from pandas import read_csv
from sklearn.model_selection import ShuffleSplit
from sklearn.linear_model import LogisticRegression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.model_selection import KFold
from  sklearn.model_selection import cross_val_score
from matplotlib import pyplot
filename = 'D:/0520代码+数据/第3、4次课:代码+数据/pima_data.csv'
names = ['preq', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
num_folds = 10
seed = 7
kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True)
models = {}
models['LR'] = LogisticRegression(multi_class='multinomial', max_iter=3000)
models['LDA'] = LinearDiscriminantAnalysis()
models['KNN'] = KNeighborsClassifier()
models['CART'] = DecisionTreeClassifier()
models['NB'] = GaussianNB()
models['SVM'] = SVC()
results = []
for name in models:
    result = cross_val_score(models[name], X, Y, cv=kfold)
    results.append(result)
    msg = '%s: %.3f (%.3f)' %(name, result.mean(), result.std())
    print(msg)

fig = pyplot.figure()
fig.suptitle('Algrtithm Comparion')
ax = fig.add_subplot(111)  # 轴
pyplot.boxplot(results)
ax.set_xticklabels(models.keys())
pyplot.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值