# 线性回归
from pandas import read_csv
from sklearn.model_selection import ShuffleSplit
from sklearn.linear_model import LogisticRegression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from matplotlib import pyplot
filename = 'D:/0520代码+数据/第3、4次课:代码+数据/pima_data.csv'
names = ['preq', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
num_folds = 10
seed = 7
kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True)
models = {}
models['LR'] = LogisticRegression(multi_class='multinomial', max_iter=3000)
models['LDA'] = LinearDiscriminantAnalysis()
models['KNN'] = KNeighborsClassifier()
models['CART'] = DecisionTreeClassifier()
models['NB'] = GaussianNB()
models['SVM'] = SVC()
results = []
for name in models:
result = cross_val_score(models[name], X, Y, cv=kfold)
results.append(result)
msg = '%s: %.3f (%.3f)' %(name, result.mean(), result.std())
print(msg)
fig = pyplot.figure()
fig.suptitle('Algrtithm Comparion')
ax = fig.add_subplot(111) # 轴
pyplot.boxplot(results)
ax.set_xticklabels(models.keys())
pyplot.show()
机械学系之-回归算法
最新推荐文章于 2024-11-07 22:09:22 发布
该篇文章介绍了如何使用Python的sklearn库对PimaIndians糖尿病数据集进行线性回归(包括LogisticRegression,LinearDiscriminantAnalysis,KNN,CART,NaiveBayes和SVM)的模型选择和交叉验证,通过boxplot展示了不同算法的性能对比。
摘要由CSDN通过智能技术生成