- 博客(3)
- 收藏
- 关注
原创 FastSAM YOLOV8-seg C++ 部署
这里可选择的比较多,可选择opencv 推理,也可选择onnxruntime推理,这里选择的是onnxruntime。FastSAM集成到最新的 YOLV8中,可以像使用YOLO 一样。同时,可使用自带的导出工具导出ONNX格式。下载好之后,可以像正常的yolov8训练的权重导出ONNX一样,将其转换成onnx格式。在 i5-10代 CPU下,单张图像计算时间不到0.4s ,效率还是可以的。首先需要下载预训练好的pt权重文件,在其github主页上。技术交流: 13361204270。
2024-04-15 16:01:55 860 1
原创 PaddleClas(PP-shitu)在Windows下的C++部署
PaddClass 推出的PP-shitu功能,在商超货物识别以及超市中有很好的应用。这个功能类比于机器视觉中的模板匹配,优点是可以快速根据参考模板图像,从一堆图像中识别出目标物体。这个比模板匹配更加鲁棒,基于深度学习的算法, 当物体存在拍摄角度不同 尺度不同时,仍然可以获得良好的识别效果。GitHub文档中给出了几种部署方式,但是没有在windows下部署的。经过大约一周的查阅和测试,最终配置成功,现将具体的配置过程记录并分享出来,供有需要的参考。联系方式: 13361204270。
2024-03-14 11:45:03 328
原创 Segment Anything C++ ONNX 部署
最近做了几个测试, Segment Anything在工业上做些简单的预处理分割效果是很不错的,而且通过点输入提示,由于工业上拍摄的东西一般位置相对固定,因此可以有广泛的应用. 比如在分割一个轮廓模糊的区域,这样对比下来,如果SAM可以提供C++的部署方案的化,其实可以将分割这个工作量大大降低,最重要的是: 无需调整参数 使用Halcon的化,当图像亮度或者其它条件变化时,需要调整参数的.这里需要onnxruntime的配置,原项目是配置到了根目录下,这里你需要根据实际的路径。
2023-08-25 16:28:33 1715 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人