在当今数字化与智能化飞速发展的时代,机器学习作为人工智能领域的核心技术,正以前所未有的速度改变着我们的生活与产业格局。由 CSDN 与 Boolan 联合举办的 2025 全球机器学习技术大会(ML-Summit),于4月18 - 19日在上海隆重举行。本次大会犹如一场技术盛宴,汇聚了来自学术界和产业界的超50位重磅嘉宾 ,共同深入探讨智能体、联邦学习、多模态大模型等前沿议题,全面呈现当前最具突破性与实践价值的AI研究与应用成果,为全球机器学习领域的发展提供了重要的交流平台与方向指引。
大会背景与意义
随着人工智能技术的广泛应用,机器学习作为其底层支撑技术,在各个行业的渗透率不断加深。从互联网、金融到医疗、制造业,机器学习技术的应用不仅提升了效率,还创造了全新的商业模式和服务体验。然而,在技术快速发展的同时,也面临着诸多挑战,如模型的可解释性、数据隐私与安全、多模态数据的融合处理等。2025全球机器学习技术大会正是在这样的背景下应运而生,旨在为学术界和产业界搭建一座沟通的桥梁,促进产学研的深度融合,共同攻克技术难题,推动机器学习技术的创新与应用。
豪华嘉宾阵容,共探前沿技术
本次大会的嘉宾阵容堪称豪华,汇聚了众多行业内的顶尖人才。加拿大工程院及加拿大皇家学院院士杨强带来《联邦大小模型协作学习》的精彩演讲,深入探讨联邦学习在大小模型协作中的创新应用。联邦学习作为一种新兴的机器学习技术,能够在保护数据隐私的前提下,实现多参与方的数据协作训练,为解决数据孤岛问题提供了有效的解决方案。在当前数据安全和隐私保护日益重要的背景下,联邦学习的发展前景广阔,杨强院士的分享无疑为该领域的研究和应用提供了新的思路和方向。
清华大学人工智能研究院副院长、IEEE Fellow朱军聚焦扩散策略学习的最新进展。扩散策略学习是机器学习领域的一个重要研究方向,它在强化学习、生成模型等领域有着广泛的应用。朱军的研究成果对于推动机器学习算法的优化和创新具有重要意义,能够帮助研究者更好地理解和解决复杂的决策问题,为人工智能的发展提供更强大的算法支持。
清华大学交叉信息研究院助理教授、前OpenAI研究员吴翼介绍了AReaL——专为推理模型与强化学习设计的高效训练系统。该系统的提出旨在解决推理模型与强化学习在训练过程中面临的效率低下问题,通过创新的算法和架构设计,AReaL能够显著提高训练速度和模型性能。这一成果对于推动推理模型和强化学习在实际应用中的落地具有重要价值,有望加速人工智能在智能机器人、自动驾驶等领域的应用进程。
同济大学计算机科学与技术学院教授、博导胡亮探讨类脑认知多模态大模型的构建。类脑认知多模态大模型旨在模拟人类大脑的认知方式,实现对多种模态数据(如图像、语音、文本等)的融合处理和理解。这一研究方向对于突破当前人工智能在感知和认知方面的局限具有重要意义,有望使人工智能系统更加智能、灵活和人性化。胡亮的研究为类脑认知多模态大模型的发展提供了理论和实践基础,推动了人工智能向更高层次的发展。
除了上述嘉宾,还有来自上海交通大学、复旦大学、深圳人工智能与机器人研究院等高校和科研机构的学术权威,以及来自一线科技企业的技术实战专家。他们从不同的角度,对机器学习领域的前沿技术展开深入探讨,为参会者带来了一场思想的盛宴。
聚焦十二大专题,呈现AI全景
大会聚焦十二大专题,全面覆盖了当前机器学习领域的热点和难点问题,为参会者提供了一个全面了解AI研究与应用成果的平台。
在大语言模型技术演进专题中,专家们探讨了大语言模型的最新发展趋势,如模型架构的创新、训练算法的优化、上下文理解能力的提升等。大语言模型作为近年来人工智能领域的重要突破,已经在自然语言处理、智能客服、内容生成等领域得到了广泛应用。然而,大语言模型的发展仍然面临着诸多挑战,如模型的可解释性、计算资源的消耗、数据质量的影响等。通过对这些问题的深入探讨,专家们为大语言模型的未来发展提供了有益的建议和方向。
大模型应用开发实践专题则关注大语言模型在实际应用中的落地经验和案例分享。从金融领域的风险评估和投资决策,到医疗领域的疾病诊断和药物研发,再到教育领域的个性化学习和智能辅导,大语言模型的应用场景越来越广泛。在这个专题中,来自不同行业的实践者分享了他们在应用大语言模型过程中遇到的问题和解决方案,为其他企业和开发者提供了宝贵的参考经验。
多模态大模型前沿专题探讨了多模态数据融合的技术挑战和创新方法。多模态大模型能够融合多种模态的数据,如文本、图像、语音等,从而实现更加全面和准确的信息理解和处理。在这个专题中,专家们介绍了多模态大模型的最新研究成果,如基于注意力机制的多模态融合方法、跨模态检索和生成技术等。这些成果为多模态大模型的发展提供了新的技术思路和方法,有望推动人工智能在智能交互、智能安防、智能驾驶等领域的应用。
GenAI产品创新与探索专题则聚焦于生成式人工智能(GenAI)的产品创新和商业应用。生成式人工智能能够生成新的内容,如图像、文本、音频等,具有广泛的应用前景。在这个专题中,参会者探讨了生成式人工智能在艺术创作、游戏开发、虚拟人等领域的应用案例,以及如何通过产品创新和商业模式创新,实现生成式人工智能的商业价值最大化。
AI Infra大模型基础设施专题关注大模型训练和部署所需的基础设施建设,如云计算、边缘计算、芯片技术等。大模型的训练和部署需要大量的计算资源和存储资源,因此,构建高效、稳定的基础设施是大模型发展的重要保障。在这个专题中,专家们介绍了大模型基础设施的最新发展趋势,如异构计算、分布式存储、智能运维等技术,为企业和开发者提供了构建大模型基础设施的技术指导。
大模型工程与架构专题探讨了大模型的工程化实现和架构设计。大模型的开发不仅需要先进的算法和技术,还需要考虑工程化的问题,如模型的可扩展性、可维护性、可移植性等。在这个专题中,专家们分享了大模型工程化实践中的经验和教训,以及如何通过合理的架构设计,提高大模型的性能和效率。
具身智能与智能硬件专题关注具身智能的发展和智能硬件的创新。具身智能是指智能体能够通过身体与环境进行交互,并根据环境的反馈进行决策和行动。在这个专题中,专家们介绍了具身智能在机器人、智能家居、智能穿戴等领域的应用案例,以及智能硬件在感知、控制、通信等方面的技术创新。这些成果为具身智能和智能硬件的发展提供了新的思路和方法,有望推动人工智能与物理世界的深度融合。
算力基建与性能优化专题聚焦于算力基础设施的建设和性能优化。算力是人工智能发展的重要支撑,随着大模型的不断发展,对算力的需求也越来越大。在这个专题中,专家们探讨了算力基础设施的发展趋势,如数据中心的绿色化、智能化建设,以及如何通过硬件优化、软件算法优化等手段,提高算力的利用率和性能。
DeepSeek技术解析与行业实践专题则深入剖析了DeepSeek模型的技术特点和在行业中的应用实践。DeepSeek模型在自然语言处理、知识图谱等领域取得了显著的成果,通过对该模型的技术解析和行业实践分享,参会者能够更好地了解DeepSeek模型的优势和应用场景,为在实际项目中应用该模型提供参考。
AI智能体专题关注AI智能体的发展和应用。AI智能体是一种能够自主感知环境、做出决策并执行行动的智能系统,在智能机器人、智能游戏、智能客服等领域有着广泛的应用前景。在这个专题中,专家们探讨了AI智能体的技术架构、决策算法、学习机制等问题,以及如何通过多智能体协作,实现更加复杂和智能的任务。
大模型+行业落地实践专题则重点分享了大模型在各个行业的落地实践经验和案例。从制造业的智能化升级,到能源行业的节能减排,再到交通行业的智能调度,大模型在各个行业的应用都取得了显著的成效。在这个专题中,来自不同行业的企业代表分享了他们在应用大模型过程中的实践经验和创新成果,为其他企业提供了借鉴和参考。
产学研深度融合,共筑AI生态
本次大会不仅是一场技术交流的盛会,更是一次产学研深度融合的重要契机。通过主题演讲、圆桌对话、技术研讨等多种形式,学术界和产业界的参会者能够充分交流思想,分享经验,共同探讨机器学习技术的发展趋势和应用前景。
在产学研合作方面,大会为高校、科研机构和企业提供了一个对接平台,促进了技术成果的转化和应用。许多高校和科研机构在大会上展示了他们的最新研究成果,吸引了企业的关注和合作意向。同时,企业也分享了他们在实际应用中遇到的问题和需求,为高校和科研机构的研究提供了方向。通过这种产学研的深度融合,能够加速机器学习技术的创新和应用,推动人工智能产业的健康发展。
此外,大会还为参会者提供了丰富的社交和交流机会,促进了行业内人士的相互认识和合作。在大会的茶歇、晚宴等活动中,参会者能够自由交流,分享经验,拓展人脉资源。这种良好的交流氛围有助于形成一个开放、合作的AI生态系统,为机器学习技术的发展提供源源不断的动力。
总结与展望
2025全球机器学习技术大会的成功举办,为全球机器学习领域的发展注入了新的活力。通过汇聚顶尖人才、聚焦前沿技术、促进产学研融合,大会为参会者提供了一个全面了解机器学习技术发展趋势和应用成果的平台,也为推动人工智能产业的发展做出了重要贡献。
展望未来,机器学习技术将继续保持快速发展的态势,在更多领域得到深入应用。随着技术的不断进步和创新,我们有理由相信,机器学习将为人类社会的发展带来更多的惊喜和变革。同时,我们也期待未来能够举办更多类似的高质量技术大会,为全球机器学习领域的研究者和从业者提供更多交流与合作的机会,共同推动人工智能技术的发展,造福人类社会。