VisionTransformer改进(3):Triplet Attention模块增强

1.Triplet Attention增强

在计算机视觉领域,注意力机制已经成为提升模型性能的关键技术。

本文将深入解析一个结合了Triplet Attention机制的Vision Transformer(ViT)实现,展示如何通过多维度注意力增强标准ViT模型的性能。

1. 代码概述

这段代码实现了一个改进版的Vision Transformer模型,主要包含两个核心部分:

  1. ​TripletAttention模块​​:一个创新的注意力机制,同时考虑通道、高度和宽度三个维度的注意力
  2. ​改进的ViT模型​​:在标准ViT的卷积投影层后添加TripletAttention模块

2. TripletAttention模块详解

TripletAttention是一种多维度注意力机制,它同时关注输入特征图的三个关键维度:通道、高度和宽度。

2.1 初始化与参数设置


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值