ResNet改进(38):与Inception模块的融合实现

1.代码介绍

本文将详细解析一个结合了ResNet34和Inception模块的自定义神经网络实现,展示如何通过模块化设计增强经典网络架构。

代码概述

这段代码实现了一个自定义的CNN模型,主要特点包括:

  1. 基于预训练的ResNet34架构
  2. 在ResNet的初始层后插入自定义的Inception模块
  3. 保持模型输出维度兼容性
  4. 可配置的类别数量和预训练权重加载

核心组件解析

  • InceptionModule类

InceptionModule实现了经典的Inception结构,包含四个并行分支:

class InceptionModule(nn.Module):
    def __init__(self, in_channels, out_channels=64):
        super(InceptionModule, self).__init__()
        
        # 四个分支定义
        self.branch1 = nn.Conv2d(in_channels, out_channels, kernel_si
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值