1.代码介绍
本文将详细解析一个结合了ResNet34和Inception模块的自定义神经网络实现,展示如何通过模块化设计增强经典网络架构。
代码概述
这段代码实现了一个自定义的CNN模型,主要特点包括:
- 基于预训练的ResNet34架构
- 在ResNet的初始层后插入自定义的Inception模块
- 保持模型输出维度兼容性
- 可配置的类别数量和预训练权重加载
核心组件解析
- InceptionModule类
InceptionModule实现了经典的Inception结构,包含四个并行分支:
class InceptionModule(nn.Module):
def __init__(self, in_channels, out_channels=64):
super(InceptionModule, self).__init__()
# 四个分支定义
self.branch1 = nn.Conv2d(in_channels, out_channels, kernel_si